MML0015 | Mathematical Logic |
Teaching Staff in Charge |
Assoc.Prof. COVACI Rodica, Ph.D., rcovacimath.ubbcluj.ro Assoc.Prof. SZANTO Csaba Lehel, Ph.D., szantomath.ubbcluj.ro |
Aims |
Introductory concepts and results on mathematical logic and set theory. |
Content |
1. ELEMENTS OF MATHEMATICAL LOGIC: Propositional calculus, the decision problem. Predicate calculus, quantifiers.
2. SETS, RELATIONS, FUNCTIONS: Operations with sets, binary relations, functions, injective, surjective, bijective functions, equivalence relations and factor sets, the kernel of a function, factorization theorems, ordered sets, lattices, order homomorphisms, Boole algebras. 3. CARDINAL NUMBERS: Definition, direct product and exponentiation of sets and functions, operations with cardinals, ordering of cardinals, finite and infinite sets. 4. NUMBER SETS: Introduction to axiomatic set theory, natural numbers (the Frege-Russell construction and Peano@s axioms), the construction of integers. |
References |
1. ADAMSON, I.T., A Set Theory Workbook, Birkhauser, Boston, 1998.
2. BILANIUK, S., A Problem Course in Mathematical Logic, Trent University, Ontario, 2003. 3. BREAZ, S.; COVACI, R., Elemente de logica, teoria multimilor si aritmetica, Editura Fundatiei pentru Studii Europene, Cluj-Napoca, 2006. 4. GRATZER, G., General Lattice Theory, Birkhauser, Boston, 1998. 5. HALMOS, P.R., Naive Set Theory, D. Van Nostrand Company Inc., Princeton, 1967. 6. KRANTZ, S.G., Logic and Proof Techniques for Computer Science, Birkhauser, Boston 2002. 7. MARCUS, A.; SZANTO, C.; TOTH, L., Logika es halmazelmelet, Sapientia Kiado, Kolozsvar, 2004. 8. NASTASESCU, C., Introducere in teoria multimilor, Editura Didactica si Pedagogica, Bucuresti, 1981. 9. PURDEA, I.; POP, I., Algebra, Editura GIL, Zalau, 2003. 10.PURDEA, I.; PELEA, C., Probleme de algebra, Editura EIKON, Cluj-Napoca, 2008. |
Assessment |
Test paper(25%) + Exam(75%).
|
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |