MIG1001 | Modelarea stocastică a datelor |
Titularii de disciplina |
Conf. Dr. CSATO Lehel, csatolcs.ubbcluj.ro |
Obiective |
Cursul urmareste prezentarea notiunilor si metodelor de baza utilizate intr-o analiza a colectiilor mari de date pentru descoperirea de eventuale asocieri, sabloane, clasificari. |
Bibliografie |
[1]. Russell S, Norvig P. (2003) Artificial Intelligence: A Modern Approach (Second Edition), Prentice Hall.
[2]. Mitchell T (1997) Machine Learning, McGraw Hill. [3]. Bernardo J.M, Smith A.F.M (2000) Bayesian Theory, John Wiley & Sons. [4]. MacKay D.J.C (2003) Information Theory, Inference and Learning Algorithms, Cambridge University Press, HTTP: http://wol.ra.phy.cam.ac.uk/mackay/itila/book.html. [5]. Rasmussen C.E, Williams C.K.I (2006) Gaussian Processes for Machine Learning, The MIT Press. [6]. Rabiner L.R, Juang, B.H (1986) An introduction to Hidden Markov models, IEEE ASSP Magazine, pp: 4-15. [7]. Durbin R, Eddy S.R, Krogh A, Mitchison G (1999) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press. [8]. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis, Wiley-Interscience. [9]. Barto A. (2002): Statistical Pattern Recognition, John Wiley & Sons. |
Evaluare |
Legaturi: | Syllabus-urile tuturor disciplinelor Versiunea in limba engleza a acestei discipline Versiunea in format rtf a acestei discipline |