Universitatea Babeş-Bolyai Cluj-Napoca
Facultatea de Matematică şi Informatică
Ciclul de studii: Masterat

FISA DISCIPLINEI

Codul
Denumirea disciplinei
MC268 Statistica matematica cu aplicatii
Specializarea
Semestrul
Ore: C+S+L
Categoria
Statutul
Matematică Aplicată
2
2+1+1
optionala
Titularii de disciplina
Prof. Dr. BLAGA Petru,  pblagacs.ubbcluj.ro
Obiective
Cunoaşterea unor metode moderne ale statisticii matematice orientate pe produse soft de bază (Matlab), cu aplicaţii în economie, medicină, etc.
Continutul
Câmp de probabilitate. Variabile aleatoare.Vectori aleatori. Funcţie de repartiţie.
Densitate de probabilitate. Funcţie de repartiţie condiţionată. Densitate de
probabilitate condiţionată. Caracterstici numerice pentru variabile aleatoare. Valoare
medie. Varianţă. Abatere standard. Corelaţie. Coeficient de corelaţie.
Valoarea medie şi matricea covarianţelor unui vector aleator. Valoare medie
condiţionată. Varianţă condiţionată. Inegalitatea lui Cebîşev. Convegenţa în
probabilitate. Convergenţa în repartiţie. Lega slabă a numerelor mari. Teoreme limită
(Lindeberg-Lévy, Moivre-Laplace, corecţii de continuitate).
Teoria selecţiei. Funcţii de selecţie. Medie de selecţie. Moment de selecţie. Moment
centrat de selecţie. Dispersie de selecţie. Funcţia de repartiţie de selecţie. Teorema
lui Glivenko. Teorema lui Kolmogorov.
Teoria estimaţiei. Estimator consistent. Estimator nedeplasat. Estimator absolut
corect. Estimator corect. Funcţie de verosimilitate. Metoda verosimilităţii maxime.
Estimator de verosimilitate maximă. Informaţia lui Fisher. Inegalitatea Rao-Cramér.
Estimator eficient. Metoda intervalelor de încredere.
Verificarea ipotezelor statistice. Test (criteriu) de verificarea unei ipoteze
statistice. Eroare de genul I. Eroare de genul II. Puterea unui test. Testul Z, testul
T şi interval de încredere pentru valoarea medie a unei caracteristici. Testul χ2 şi
interval de încredere pentru varianţa unei caracteristici.
Testul Z şi testul T pentru compararea a două valorii medii, interval de încredere
pentru diferenţa a două valori medii. Testul F pentru compararea a două varianţe,
interval de încredere pentru raportul a două varianţe.
Testul χ2 pentru parametrii legii multinomiale. Testul de concordanţă neparametric
χ2. Testul de concordanţă parametric χ2 . Testul χ2 privind omogenitatea. Testul
χ2 pentru tabele de contingenţă. Testul de concordanţă al lui Kolmogorov. Testul de
concordanţă Kolmogorov-Smirnov.
Problema regresiei. Modelul liniar general. Ajustarea prin metoda celor mai mici
pătrate. Modelul liniar cu termen constant. Coeficientul de determinare al ajustării.
Formula varianţei totale.
Modelul Gauss-Markov. Teorema Gauss-Markov. Estimatori nedeplasaţi pentru coeficienţii
modelului. Estimator nedeplasat pentru varianţa modelului. [1; Cap. 3].
Modelul liniar clasic. Legea de probabilitate a vectorului estimatorilor
coeficienţilor modelului. Legea de probabilitate a estimatorului varianţei modelului.
Testul T pentru coeficienţii modelului, intervale de încredere pentru coeficienţii
modelului.
Estimatori de verosimilitate maximă pentru coeficienţii şi varianţa modelului.
Problema previziunii. Estimator pentru previziune. Interval de încredere pentru
previziune.
Testul F pentru toţi coeficienţii modelului. Testul F pentru un grup de coeficienţi.
Testul F pentru modelul liniar clasic cu termen constant. Testul F pentru egalitatea
unor coeficienţi . Testul F pentru identitatea a două modele liniare clasice. Tabel
ANOVA.
Analiză de varianţă cu un factor. Ecuaţia varianţei totale. Testul F pentru egalitatea
mediilor categoriilor. Tabel ANOVA. [1; Cap. 3].
Analiză de varianţă cu doi sau mai mulţi factori. Analiză de varianţă fără
interacţiune. Testul F pentru efectul nul al unui factor. Analiză de varianţă cu
interacţiune. Testul F pentru efectul nul al unui factor. Testul F privind efectul nul
al interacţiunii dintre doi factori.
Bibliografie
1. AGRATINI, O., BLAGA, O., COMAN, Gh.: Lectures on Wavelets, Numerical Methods and
Statistics, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2005.
2. BLAGA, P.: Statistică... prin Matlab, Presa Universitară Clujeană, Cluj-Napoca, 2002.
3. LEBART, L. - MORINEAU, M.G. - FÉNELON, J.-P.: Traitment des données statistiques.
Paris: Dunod, 1982
4. LEHMANN, E.L.: Testing statistical hypotheses. New York: Springer, 1997.
5. MONTGOMERY, D.C. - PECK, E.A. - VINING, G.G.: Introduction to linear analysis. New
York: John Wiley & Sons (3rd ed.), 2001.
6. SAPORTA, G.: Probabilités, analyse des données et statistique. Paris: Editions
Technip, 1990.
7. TASSI, Ph.: Methodes statistiques. Paris: Economica (2nd ed.), 1989.
8. SCHERVISH, M.J.: Theory of statistics. New York: Springer, 1995.
9. STAPLETON, J.H.: Linear statistical models. New York: John Wiley & Sons, 1995.
10.WEERAHANDI, S.: Exact statistical methods for data analysis. New York: Springer, 1994.
Evaluare
Nota finală se constituie din:
Examen scris la sfârşit de semestru : 50%
Participarea activă la activităţile didactice : 25%
Evaluarea temelor din timpul semestrului : 25%
Legaturi: Syllabus-urile tuturor disciplinelor
Versiunea in limba engleza a acestei discipline
Versiunea in format rtf a acestei discipline