Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Master

SUBJECT

Code
Subject
MO265 Algorithmic Combinatorics
Section
Semester
Hours: C+S+L
Category
Type
Computational Mathematics - in Hungarian
2
2+2+0
compulsory
Teaching Staff in Charge
Lect. ANDRAS Szilard Karoly,  andraszmath.ubbcluj.ro
Aims
We present some problems and recent results concerning arithmetical functions, prime numbers pseudo prime numbers and about special combinatorial problems.
Content
Basic notions: divisors, primes, lcm, gcd, integer parts, motion of a billiard ball
Asymptotic formulas and complexity
The Bertrand postulate and combinatorial algorithms for finding primes
Arithmetical functions, the Mobius function, the inversion formula, Euler’s totient function, the number and the sum of divisors, Dirichlet convolutions and applications
Arithmetical functions and algorithms
Primes and pseudoprimes, Carmichael numbers
Complexity of algorithms, the Euclidian algorithm


References
1. AIGNER, M.-ZIEGLER, G. M.: Proofs from the BOOK, Springer Verlag, 1998.
2. BACH E.- SHALLIT, J.: Algorithmic number theory, Cambridge: MIT Press, 1996.
3. BRESSOUD, D.-WAGON, S.: A course in computational number theory, Springer Verlag, 2000.
4. ERDOS, P.-GRAHAM, R. L.: Old and new problems and results in combinatorial number theory, L. Enseigment Math., 1980.
5. GRAHAM, R. L.-KNUTH D, E-PATASHNIK, O.: Konkret matematika, Budapest: Műszaki Konyvkiado, 1998.
6. VAN LINT, J. H.-WILSON, R. M.: A course in combinatorics, Cambridge: Cambridge University Press, 2001.
7. ANDRÁS SZILÁRD: Dinamikus rendszerek, Editura didactica si pedagogica, 2008
8. J.G. MICHAELS, J.L. GROSS, J.W. GROSSMAN, D.R. SHIER: Handbook of discrete and combinatorial mathematics, CRC Press, 1999
9. H.S.WILF: Algorithms and complexity, www.math.upenn.edu/~wilf/AlgoComp.pdf 1994


Assessment

Activity (courses and seminars): 30%
Project: 30%
Final exam 40%

If a student’s absentees is greater than 40% from the number of all activities, the student has to prepare a special presentation (paper) in a subject specified by the professor.

Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject