MMP0007 | Experimental Data Processing |
Teaching Staff in Charge |
Assoc.Prof. TRÎMBITAS Radu Tiberiu, Ph.D., tradumath.ubbcluj.ro |
Aims |
To introduce students to problems and methods of Experimental Data Processing |
Content |
1. Errors. Measuring and classification.
2. Interpolation of data. Polynomial interpolation(Lagrange, Hermite). Efficient computing of interpolation polynomials. Divided differences. Spline interpolation. B-spline, cubic spline. 3. Least squares approximation. Normal equations and orthogonal Systems. Orthogonal polynomials. 4. Linear regression. Linear models and prediction. Inferences on model and coefficients. Curve fitting. 5. Generalized linear models. 6. Multivariate statistics: Principal component analysis, clusters, factor analysis. 7. Data visualization. 2D and 3D Graphics. Volume visualization techniques. |
References |
P. Blaga – Statistica prin … MATLAB, Presa Universitară Clujeană, Cluj-Napoca 2003
D.Ciurchea, V.Chiş - Prelucrarea datelor experimentale, Litografia UBB, Cluj-Napoca, 1995. W.H. Press, B.P. Flannery, S.A. Teulkolsky, W.T. Vetterling - Numerical Recipes, third edition, Cambridge Univ. Press, New York, 2007. R. Trîmbiţaş – Metode statistice, Presa Universitară Clujeană, Cluj-Napoca, 2000 |
Assessment |
Exam: written paper and practical test. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |