MMM0007 | Computational Astronomy |
Teaching Staff in Charge |
Assoc.Prof. SZENKOVITS Ferenc, Ph.D., fszenkomath.ubbcluj.ro |
Aims |
Students will be familiarized with the basic astronomical knowledge. The presentation is orientated towards algorithmically methods. Techniques and methods of realization of personal computer dedicated astronomical programs for the most important astronomical phenomena will be presented. |
Content |
1. Coordinate systems: Calendar and Julian dates; Equiliptic and equatorial coordinates; Precession; Geocentric coordinates and the orbit of Sun
2. Calculation of rising and setting times: The observer's horizon sytem; Sun and Moon; Sideral time and hour angle; Universal time and ephemeris time; Parallax and refraction; Rising and setting times 3. Commetary orbits: Form and orientation of orbits; Position in the orbit; mathematical treatement of Kepler's equation; Near-parabolic orbits; Gaussian Vectors; Light-time 4. Special perturbations: Ecuation of motin; Planetary coordinates; Numerical integration; Osculating elements; 5. Planetary orbits: Series expansion of the Kepler problem; Perturbation terms; Numerical treatment of the series expansions; Apparent and astrometric coordinates 6. Physical ephemerides of the planets: Rotation; Illumination conditions 7. The orbit of the Moon: General description of the Lunar orbit; Brown' Lunar theory; The Chebyshev Approximation 8. Solar eclipses: Phases of the Moon and eclipses; Geometry of an eclipse; Geographic coordinates and the flattening of the Earth; Duration of an eclipse; Solar and Lunar coordinates; local circumstances 9. Stellar occultations: Apparent positions; Geocentric conjunction; The fundamental plane; Dissappearance and reappearance 10. Orbit determination: Determining an orbit from two position vectors; The shortened Gauss method; The comprehensive gaussian method |
References |
1. BOULET, Dan L.: Methods of orbit determination for the microcomputer. Willmann-Bell, Richmond, 1991
2. MARIK Miklós: Csillagászat, Akadémia Kiadó, Budapest, 1998. 3. MONTENBURK, O. , PFLEGER, T. : Asronomy on the personal computer, Springer, 2002. 4. PAL, A., POP, V., URECHE, V. : Astronomie, Culegere de probleme, Presa Universitara clujeana, Cluj-Napoca, 1998 5. PAL, A., URECHE, V. : Astronomie, Bucuresti, 1983. 6. POP, V. POP, D. : Trigonometrie plana si trigonometrie sferica, Presa Universitara clujeana, Cluj-Napoca, 2003. 7. SZENKOVITS Ferenc: Bevezetés a csillagászatba, Egyetemi Kiadó, Kolozsvár, 2007. 8. URECHE, V.: Universul Vol. I Astronomie, Cluj-Napoca, 1982. Universul Vol. II Astrofizica, Cluj-Napoca, 1987. |
Assessment |
The final mark contains the activity at the laboratory (25%), the individual project (20%) and the result at the final test (20%). |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |