Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Master

SUBJECT

Code
Subject
MML1001 Groups Theory and Applications
Section
Semester
Hours: C+S+L
Category
Type
Mathematics
1
2+2+0
speciality
compulsory
Teaching Staff in Charge
Assoc.Prof. COVACI Rodica, Ph.D.,  rcovacimath.ubbcluj.ro
Aims
Basic notions and results concerning general theory of groups, an introduction to the theory of group representations, some applications.
Content
1. RUDIMENTS OF GROUP THEORY: Group, subgroup, index, Lagrange@s theorem, normal subgroup, factor group, homomorphisms, the isomorphism theorems, inner automorphisms, characteristic subgroups, center of a group, commutators, the derived group.
2. GROUP ACTIONS: Permutation groups, action of a group on a set, the associated representation, faithful actions, orbits and stabilizers, transitive actions, the orbit-stabilizer theorem, some applications.
3. LOCAL STRUCTURE OF FINITE GROUPS: Sylow@s theorems, Cauchy@s theorem, some applications.
4. NORMAL STRUCTURE OF GROUPS: Composition series, solvable groups, nilpotent groups.
5. GROUP REPRESENTATIONS: Schur@s lemma, Maschke@s theorem, characters.
6. APPLICATIONS OF GROUP THEORY: Applications in mathematics, applications in other fields.
References
1. ALPERIN, J.L.; BELL, R.B., Groups and representations, Springer-Verlag, New York, 1995.
2. BECHEANU, M., etc., Algebra, Editura ALL, Bucuresti, 1998.
3. HUPPERT, B., Endliche Gruppen I, Springer-Verlag, Berlin - New York, 1967.
4. POPESCU, D.; VRACIU, C., Elemente de teoria grupurilor finite, Editura Stiintifica si Enciclopedica, Bucuresti, 1986.
5. PURDEA, I.; POP, I., Algebra, Editura GIL, Zalau, 2003.
6. PURDEA, I.; PELEA, C., Probleme de algebra, Editura EIKON, Cluj-Napoca, 2008.
7. ROTMAN, J.J., An Introduction to the Theory of Groups, Springer-Verlag, New York, 1995.
Assessment
Report(50%) + Exam(50%).
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject