Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Master

SUBJECT

Code
Subject
MME1004 Topological Methods for Nonlinear Partial Differential Equations
Section
Semester
Hours: C+S+L
Category
Type
Applied Mathematics
3
2+2+0
speciality
optional
Teaching Staff in Charge
Prof. PRECUP Radu, Ph.D.,  r.precupmath.ubbcluj.ro
Aims
Fundamental methods for the study of nonlinear elliptic problems: homotopy methods; upper and lower solution method and critical point method.
Content
1. Introduction: basic results from linear elliptic equations theory (maximum principle, eigenvalues and eigenfunctions, the Dirichlet principle, continuous and compact embedding theorems).
2. Homotopy methods: the Leray-Schauder continuation principle; $a priori$ bounds technique; applications.
3. Upper and lower solution technique.
4. Critical point method: variational formulation; the Ambrosetti-Rabinowitz mountain pass theorem; applications.
References
1. R. Precup, Lectii de ecuatii cu derivate partiale, Presa Universitara Clujeana, Cluj, 2004.
2. R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002.
3. H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.
4. M. Struwe, Variational Methods, Springer, Berlin, 1990.
5. O. Kavian, Introduction a la Theorie des Points Critiques, Springer, Paris, 1995.

Assessment
10% activity at courses and seminaries
40% scientific project
50% exam
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject