Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Graduate

SUBJECT

Code
Subject
MME0004 Partial Differential Equations
Section
Semester
Hours: C+S+L
Category
Type
Mathematics
5
2+2+0
speciality
compulsory
Mathematics and Computer Science
5
2+2+0
speciality
compulsory
Applied Mathematics
5
2+2+0
speciality
compulsory
Teaching Staff in Charge
Prof. TRIF Damian, Ph.D.,  dtrifmath.ubbcluj.ro
Lect. ANDRAS Szilard Karoly,  andraszmath.ubbcluj.ro
Aims
Assimilation of the basic elements of classical and modern theory of
linear partial differential equations.
Content
1. Classical theory for partial differential equations of second order: fundamental solutions of Laplace equations, maximum principles, uniqueness theorems, Green functions.
2. Separable variables method. Fourier method.
3. Generalized solutions for Dirichlet and Neumann problems associated to Poisson and Laplace equations.
4. Fourier transform method in the theory of partial differential equations.
References
1. BARBU, V., Probleme la limita pentru ecuatii cu derivate partiale, Ed. Acad. Române, Bucuresti, 1993.
2. BRÉZIS, H., Analyse fonctionelle. Théorie et applications, Masson, Paris, 1983.
3. GILBARG, D., TRUDINGER, N.S., Elliptic partial differential equations of second order, Springer, Berlin, 1983.
4. PRECUP, R., Lectii de ecuatii cu derivate partiale, Presa Universitara Clujeana, 2004.
5. SIMON, L., BADERKO, E.A., Másodrendu parciális differenciálegyenletek, Tankönyvkiadó, Budapest, 1983.
6. SZILÁGYI P., Másodrendu parciális differenciálegyenletek, BBTE, Kolozsvár, 1998.
7. VLADIMIROV, V.S., Ecuatiile fizicii matematice, Ed. St. Enc., Bucuresti, 1981 (Bevezetés a parciális differenciálegyenletek elméletébe, Muszaki Kiadó, Budapest, 1980).
8. TRIF, D., Ecuatii cu derivate partiale, UBB, Cluj, 1993.
Assessment
Written and oral examination
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject