MI377 | Evolutive Programming |
Teaching Staff in Charge |
Assoc.Prof. SOOS Anna, Ph.D., asoosmath.ubbcluj.ro |
Aims |
Introduction in new optimization methods |
Content |
1. Genetic algorithms: representation, evaluation function, genetic operators, parameters of genetic programs, the algorithm.
2. Function optimization: binary implementation, floiting point reprezentation, experimental results 3. Prisoner's dilemma, traveling salesman problem: representation, experimental results 4. Simulated annealing: general notions, local optima. 5. Numerical optimization: comparison of the numerical optimization methods. 6. Theoretical approach of genetic algorithms: shemes, characterization, convergence of the algorithm. 7. Evolutionary programming and genetic programming: evolution programs and heuristics. Multiobjective optimization. |
References |
1. A. Almos, S. Gyori, G. Horvath, A. Koczy: Genetikus algoritmusok, Typotex, 2002
2. Thomas Bäck. Evolutionary algorithms in theory and practice. OxfordUniversity Press, New York, 1996. 3. D.E. Goldberg: Genetic algoritms in Search, Optimization and machine Learning, Addison Westley, 1989 4. H. Costin, D.Dumitrescu: Retele neuronale, teorie si aplicatii, Teora, 1996 5. Z. Michalewicz: Genetic Algorithms+ Data Structures Evolutiv Programs, Springer,1996 |
Assessment |
Exam |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |