Universitatea Babeş-Bolyai Cluj-Napoca
Facultatea de Matematică şi Informatică
Ciclul de studii: Licență

FISA DISCIPLINEI

Codul
Denumirea disciplinei
MII0001 Inteligenţă artificială
Specializarea
Semestrul
Ore: C+S+L
Categoria
Statutul
Informatică
4
2+1+1
specialitate
obligatorie
Matematică informatică
6
2+1+1
specialitate
obligatorie
Titularii de disciplina
Prof. Dr. DUMITRESCU Dan Dumitru,  ddumitrcs.ubbcluj.ro
Lect. Dr. OLTEAN Mihai,  molteancs.ubbcluj.ro
Lect. Dr. CSATO Lehel,  csatolcs.ubbcluj.ro
Obiective
Sa furnizeze o introducere coerenta in domeniul I.A.
Sa realizeze directiile fundamentale de evolutie a domeniului.
Sa asigure baza necesara urmaririi unor cursuri avansate.
Continutul
1. Paradigma logico-simbolica a Inteligentei artificiale.
1.1. Rezolvarea problemelor in IA.
1.2. Spatiul starilor problemei.
1.3. Sisteme de reguli de producere.
1.4. Strategii de cautare (control).
1.4.1. Strategii prin incercari succesive.
1.4.2. Control irevocabil.
1.4.3. Introarcere cronologica.
1.4.4. Grafe si arbori de cautare.
1.5. Caracteristicile sistemelor de producere.
1.6. Explozia combinatoriala.
1.7. Cautare euristica.
2. Metode de rezolvare a problemelor.
2.1. Rationamentul inainte si rationamentul inapoi.
2.2. Metode de cautare oarba(neinformata) in spatiul starilor.
2.3. Cautare ordonata. Functia de evaluare.
2.4. Algoritmul A si algoritmul A*.
2.5. Admisibilitatea algoritmului A*.
2.6. Compararea algoritmilor.
3. Reprezentarea cunoasterii in IA.
3.1. Reprezentarea cunoasterii folosind logica predicatelor.
3.2. Reprezentarea cunoasterii folosind logici nestandard.
3.3. Metode declarative si metode procedurale.
3.4. Reprezentarea procedurala(sistemele SIR, SHRDLU).
3.5. Completitudinea si consistenta sistemelor procedurale.
3.6. Retele semantice.
3.7. Reprezentarea cunoasterii prin cadre.
3.8. Reprezentarea prin scenarii.
4. Invatarea in sistemele cu inteligenta artificiala.
4.1. Directii de cercetare.
4.1.1. Achizitia simbolica.
4.1.2. Modelarea neuronala.
4.1.3. Invatarea unui domeniu.
4.2. Strategii de invatare.
4.2.1. Tipuri de invatare.
4.2.2. Invatarea inductiva.
4.3. Instruire neuronala.
4.3.1. Instruire supervizata.
4.3.2. Instruire nesupervizata.
4.3.3. Instruire hebbiana.
5. Paradigma conexionista a Inteligentei Artificiale.
5.1. Istoric.
5.2. Elemente de neurobiologie.
5.3. Modele conexioniste-principii de baza.
5.4. Paradigmele instruirii.
6. Modelul perceptronului.
6.1. Arhitectura de baza.
6.2. Functia criteriu.
6.3. Algoritmul de instruire.
6.4. Convergenta procedurii de instruire.
6.5. Limite ale perceptronului.
6.6. Arhitrctura cu mai multe straturi.
6.7. Instruirea perceptronului cu mai multe straturi.
6.8. Algoritmul Gallant.
7. Instruire prin minimizarea erorilor patratice.
7.1. Metoda globala.
7.2. Algoritmul Widrow-Hoff (regula delta).
7.3. ADALINE.
7.4. Procedura probabilista.
7.5. Convergenta metodei iterative.
7.6. Comparatia cu perceptronul.
8. Retele asociative.
8.1. Memorii asociative bidirectionale(MAB).
8.2. Asociatorul liniar.
8.3. Memorii liniare optimale.
8.4. Functionarea MAB.
8.5. Stabilitatea MAB. Functii Liapunov.
8.6. MAB adaptive.
9. Modelul Hopfield.
9.1. Arhitectura.
9.2. Instruirea si functionarea.
9.3. Stabilitatea.
10. Propagarea inapoi a erorii.
10.1. Arhitectura.
10.2. Functia criteriu.
10.3. Regula de corectie.
10.4. Algoritmul de propagare inapoi.
10.5. Convergenta procedurii.
10.6. Marirea vitezei de convergenta.
10.6.1. Metoda momentului.
10.6.2. Metoda de tip Newton.
10.6.3. Metoda directiilor conjugate.
10.6.4. Metoda de netezire.
Bibliografie
DUMITRESCU,D.,B Lazzerini,Evolutionary Computation, CRC Press, New York, Boca Raton, 2000
DUMITRESCU,D.,B Lazzerini,Fuzzy Sets and treir Application in Training and Clustering , CRC Press, New York, Boca Raton, 2000
DUMITRESCU, D.,Principiile Inteligentei artificiale, Editura Albastra, Cluj,2000.
DUMITRESCU, D.,Principiile teoriei clasificarii, Editura Academiei, Bucuresti,2000.
DUMITRESCU, D.,Algoritmi genetici si strategii evolutive. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj,2000.
DUMITRESCU, D., Inteligenta artificiala, Univ. "Babes-Bolyai", 1995.
DUMITRESCU, D., Modele conexioniste in Inteligenta Artificiala, Univ. "Babes-Bolyai", 1995.
DUMITRESCU, D., Retele Neuronale, Teora, 1997
MALITA, M., Bazele matematice ale Inteligentei Artificiale, Ed.Tehnica, 1988.
PATRIDGE, D., Artificial Intelligence. Aplications in the future of software engineering, Ellis Harwood Series in A.I., John Wiley & Sons, New York 1986.
RICH, E. Artificial Intelligence, Mc.Graw Hill, 1989.
WINSTON, P., Inteligenta artificiala, Ed.Tehnica, 1980.
GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989.
Evaluare
Fiecare student trebuie sa demonstreze ca a atins un nivel acceptabil de cunoastere si intelegere a domeniului, ca este capabil sa exprime cunostintele intr-o forma coerenta, ca are capacitatea de a stabili anumite conexiuni si de a utiliza cunostintele in rezolvarea unor probleme. Verificarea cunostintelor consta in EVALUAREA LUCRARILOR de laborator, a activitatii de seminar si din doua lucrari scrise. Fiecare student va primi cate o nota pentru fiecare activitate. Nota finala va fi media notelor.
Legaturi: Syllabus-urile tuturor disciplinelor
Versiunea in limba engleza a acestei discipline
Versiunea in format rtf a acestei discipline