MC032 | Introducere în wavelets |
Titularii de disciplina |
Conf. Dr. SOOS Anna, asoosmath.ubbcluj.ro |
Obiective |
Insusirea elementelor de baza relative la functii wavelets. |
Continutul |
Bazele matematice:
Elemente de analiza Fourier. Wavelets din perspectiva istorica. Transformari integrale wavelets si analiza timp-frecventa. Analiza multirezolutie,legatura intre wavelets si functii spline. Descompuneri si reconstructii wavelets.Wavelets de suport compact. Wavelets ortogonale. Aplicatii ale functiilor wavelets. Wavelets scalari. Transformata wavelet discreta. Constructie. Aplicatii: procesarea semnalelor, analiza numerica Multiwavelets: definitii si proprietati. Constructie. Aplicatii |
Bibliografie |
1. BEYLKIN, G., R.COIFMAN, I.DAUBECHIES, S.MALLAT, Y.MEYER, L.RAPHAEL and B.RUSKAI(eds), Wavelets and Their Applications, Jones and Bartlett, Cambridge, MA, 1992.
2. CHUI,C.K., An Introduction to Wavelets, Academic Press, Inc.Harcourt Brace Jovanovich, Publishers, 1992. 3. KEINERT, F.: Wavelets and Multiwavelets, Chapmann & Hall, 2004 |
Evaluare |
Examen. |
Legaturi: | Syllabus-urile tuturor disciplinelor Versiunea in limba engleza a acestei discipline Versiunea in format rtf a acestei discipline |