Universitatea Babeş-Bolyai Cluj-Napoca
Facultatea de Matematică şi Informatică
Ciclul de studii: Licență

FISA DISCIPLINEI

Codul
Denumirea disciplinei
MC030 Teoria operatorilor liniari
Specializarea
Semestrul
Ore: C+S+L
Categoria
Statutul
Matematică - linia de studiu română
8
2+2+0
optionala
Matematică-Informatică - linia de studiu română
8
2+2+0
optionala
Matematici aplicate
8
2+2+0
optionala
Titularii de disciplina
Prof. Dr. AGRATINI Octavian,  agratinimath.ubbcluj.ro
Obiective
Cursul contine aplicatii ale teoremelor de tip Korovkin.
Cunoasterea si aprofundarea metodelor de constructie a operatorilor de aproximare.
Cunoasterea celor mai noi rezultate obtinute relativ la generalizari ale unor operatori de aproximare.
Continutul
Produse de convolutie si operatori liniari pozitivi.
Construirea operatorilor liniari prin metode de sumare: Cesaro, Euler, Hausdorff, Jakimovski.
Construirea operatorilor liniari si pozitivi prin metode probabilistice. Studiul operatorilor clasici: Bernstein, Baskakov, Feller, Favard-Szasz, Meyer-Konig si Zeller, Weierstrass.
Operatorii Stancu, Bleimann, Butzer si Hahn.
Generalizari ai operatorilor clasici in sens Durrmeyer si in sens Kantorovich. Proiectori Altomare si aplicatii.
Aproximarea functiilor convexe de ordin superior. Semigrupuri de operatori.
Polinoame de tip binomial si aplicatii.
Bibliografie
[1] AGRATINI, O., Aproximare prin operatori liniari, Presa Universitara Clujeana, 2000.
[2] ALTOMARE, F., CAMPITI, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin-New York, 1994.
[3] ANASTASSIOU, G.A., GAL, S.G., Approximation Theory. Moduli of Continuity and Global Smoothness Preservation, Birkauser, Boston, 2000.
[4] BENNETT, C., SHARPLEY, R., Interpolation of Operators, Academic Press, Inc., New York, 1998.
[5] DITZIAN, Z., TOTIK, V., Moduli of Smoothness, Springer Series in Computation Mathematics, Vol. 9, Springer-Verlag, New York Inc., 1987.
[6] STANCU, D.D., COMAN, GH., AGRATINI, O., TRIMBITAS, R., Analiza numerica si teoria aproximarii, Vol.I, Presa Universitara Clujeana, 2001.
Evaluare
Pe parcursul semestrului o lucrare scrisa (in saptamana a VII-a).
In sesiune: examen.
Nota finala reprezinta media aritmetica a celor 2 note, prima cu ponderea 1,
a doua cu ponderea 2.
Legaturi: Syllabus-urile tuturor disciplinelor
Versiunea in limba engleza a acestei discipline
Versiunea in format rtf a acestei discipline