Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Master

SUBJECT

Code
Subject
MO265 Algorithmic Combinatorics
Section
Semester
Hours: C+S+L
Category
Type
Computational Mathematics - in Hungarian
2
2+2+0
compulsory
Teaching Staff in Charge
Assoc.Prof. BEGE Antal, Ph.D.,  begemath.ubbcluj.ro
Aims
We present some problems and recent results concerning arithmetical functions, prime numbers pseudo prime numbers and about special combinatorial problems.
References
1. AIGNER, M.-ZIEGLER, G. M.: Proofs from the BOOK, Springer Verlag, 1998.
2. AIGNER, M.-ZIEGLER, G. M.: Bizonyitasok a KONYVBOL, Budapest: Typotex, 2004.
3. BACH E.- SHALLIT, J.: Algorithmic number theory, Cambridge: MIT Press, 1996.
4. BEGE, ANTAL: Beveztes a szamelmeletbe, Cluj Napoca: Scientia Kiado, 2002.
5. BEGE, ANTAL-DEMETER, ALBERT-LUKACS ANDOR: Szamelmeleti feladatgyujtemeny, Cluj Napoca: Scientia Kiado, 2002.
6. BRESSOUD, D.-WAGON, S.: A course in computational number theory, Springer Verlag, 2000.
7. ERDOS, P.-GRAHAM, R. L.: Old and new problems and results in combinatorial number theory, L. Enseigment Math., 1980.
8. GRAHAM, R. L.-KNUTH D, E-PATASHNIK, O.: Konkret matematika, Budapest: Muszaki Konyvkiado, 1998.
9. VAN LINT, J. H.-WILSON, R. M.: A course in combinatorics., Cambridge: Cambridge University Press, 2001.
Assessment
Exam
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject