MO260 | Numerical Methods in Optimization |
Teaching Staff in Charge |
Prof. LUPSA Liana, Ph.D., llupsamath.ubbcluj.ro |
Aims |
Getting to know some significant numerical methods for solving the optimization problems. |
Content |
1. Numerical methods to minimize the unimodal functions.
2. Numerical methods to minimize the unconstrained function: decreasing methods, conjugated directions methods, relaxation methods, methods whithout the hypothesis of differentiability. 3. Numerical methods with feasible directions, 4 .Numerical methods based on reducing constrained problems to unconstrained ones 5. Cutting methods, 6. Inner point methods 7. Branch and bound methods. 8. Specific methods to solve fractional, hyperbolic and quadratic programming problems are studied, too. 9. Methods to solve liniar optimisation problems: simplex methods, Hacian's method, Karmarkar's method. |
References |
1. ANDREI N., Programare matematica avansata. Teorie, metode computationale, aplicatii. Bucuresti: Ed. Tehnica, 1999.
2. BRECKNER W.W.: Cercetare operationala, Univ.Babes-Bolyai, Cluj-Napoca ,1981. 3. BRECKNER W.W., DUCA D.I.: Culegere de probleme de cercetare operationala, Universitatea, Cluj-Napoca, 1983. 4. FORGO F., Nonconvex programming. Budapest: Akademiai Kiado, 1988. 5. PADBERG M.: Linear Optimization and Extensions, Springer-Verlag,Berlin, 1995 6. PANIK M.J.: Linear Programming: mathematics, theory and algorithms, Kluwer Academic Publishers, Dordrecht, 1996. 7. VOSE M.D., The simple Genetic Algorithm: Foundations and Theory. Cambrige: MIT Press, MA, 1998. |
Assessment |
Project and Prezentation. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |