Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Graduate

SUBJECT

Code
Subject
MMM0007 Computational Astronomy
Section
Semester
Hours: C+S+L
Category
Type
Mathematics - in Hungarian
6
2+1+0
speciality
optional
Mathematics-Computer Science - in Hungarian
6
2+1+0
speciality
optional
Teaching Staff in Charge
Assoc.Prof. SZENKOVITS Ferenc, Ph.D.,  fszenkomath.ubbcluj.ro
Aims
Students will be familiarized with the basic astronomical knowledge. The presentation is orientated towards algorithmically methods. Techniques and methods of realization of personal computer dedicated astronomical programs for the most important astronomical phenomena will be presented.
Content
1. Coordinate systems: Calendar and Julian dates; Equiliptic and equatorial coordinates; Precession; Geocentric coordinates and the orbit of Sun
2. Calculation of rising and setting times: The observer@s horizon sytem; Sun and Moon; Sideral time and hour angle; Universal time and ephemeris time; Parallax and refraction; Rising and setting times
3. Commetary orbits: Form and orientation of orbits; Position in the orbit; mathematical treatement of Kepler@s equation; Near-parabolic orbits; Gaussian Vectors; Light-time
4. Special perturbations: Ecuation of motin; Planetary coordinates; Numerical integration; Osculating elements;
5. Planetary orbits: Series expansion of the Kepler problem; Perturbation terms; Numerical treatment of the series expansions; Apparent and astrometric coordinates
6. Physical ephemerides of the planets: Rotation; Illumination conditions
7. The orbit of the Moon: General description of the Lunar orbit; Brown@ Lunar theory; The Chebyshev Approximation
8. Solar eclipses: Phases of the Moon and eclipses; Geometry of an eclipse; Geographic coordinates and the flattening of the Earth; Duration of an eclipse; Solar and Lunar coordinates; local circumstances
9. Stellar occultations: Apparent positions; Geocentric conjunction; The fundamental plane; Dissappearance and reappearance
10. Orbit determination: Determining an orbit from two position vectors; The shortened Gauss method; The comprehensive gaussian method
References

1. FREEDMAN R.A.,KAUFMANN W.J. : Universe, New-York, 2002.
2. MENZEL, D.H. : Csillagaszat (trad. din engleza), Budapest, 1980.
3. MONTENBURK, O. , PFLEGER, T. : Asronomy on the personal computer, Springer, 2002.
3. PAL, A., POP, V., URECHE, V. : Astronomie, Culegere de probleme, Presa Universitara clujeana, Cluj-Napoca, 1998
4. PAL, A., URECHE, V. : Astronomie, Bucuresti, 1983.
5. SHU, F.H. : The Physical Universe. An Introduction to Astronomy, University Science Books, 1982.
6. URECHE, V.: Universul Vol. I Astronomie, Cluj-Napoca, 1982. Universul Vol. II Astrofizica, Cluj-Napoca, 1987.
7. UNSOLD, A., BASCHEK, B : Der neue Kosmos, Springer, 2002.
8. POP, V. POP, D. : Trigonometrie plana si trigonometrie sferica, Presa Universitara clujeana, Cluj-Napoca, 2003.
9. WEIGERT, C.- WENDKLER, H.: Astronomie und Astrophysik, VCH Verlagsgeselschaft mbH, 1996
Assessment
The final mark contains the activity at the seminar (10%), the activity at the laboratory(20%) and the result at the oral exam at the end of semester (70%).
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject