MMC0001 | Complex Analysis |
Teaching Staff in Charge |
Prof. SALAGEAN Grigore Stefan, Ph.D., salageanmath.ubbcluj.ro Prof. BULBOACA Teodor, Ph.D., bulboacamath.ubbcluj.ro Prof. KOHR Gabriela, Ph.D., gkohrmath.ubbcluj.ro Asist. NECHITA Veronica Oana, vnechitamath.ubbcluj.ro |
Aims |
Appropriation of the basic knowledge of the theory of complex functions of a complex variable and the presentation of some applications of this theory. |
Content |
1. Complex numbers. The extended complex plane. Stereographic projection.
2. Holomorhic functions. Derivatives of a complex function of one variable. Cauchy - Riemann conditions. Geometric interpretation of the derivative. Examples of holomorphic functions. Homographic functions. Applications. 3. Integration for complex functions. Cauchy Integral. Cauchy's Theorem. Cauchy's formulas. 4. Sequences and series of holomorphic functions. Weierstrass Theorem. Power series. The analyticity of holomorphic functions. Zeroes of holomorphic functions. Identity's Theorem of holomorphic functions. Maximum modulus Theorem. Laurent series. Singular points. Meromorphic functions. 5. Residues Theorem. Applications. |
References |
1. HAMBURG, PETRE - MOCANU, PETRU - NEGOESCU, NICOLAE : Analiză matematică (Funcţii complexe), Bucureşti: Editura Didactică şi Pedagogică, 1982.
2. GAŞPAR, DUMITRU - SUCIU, NICOLAE : Analiză complexă, Bucureşti, Editura Academiei Române, 1999. 3. KRANTZ, STEVEN : Handbook of complex variables, Boston, Basel, Berlin: Birkhauser Verlag, 1999. 4. CONWAY, J. B. : Functions of one complex variable II, Graduate Texts in Mathematics, 159, New York: Springer Verlag, 1996. 5. BULBOACĂ, TEODOR - NÉMETH, SÁNDOR : Komplex Analizis, Cluj-Napoca, Editura Abel (Erdely Tankönyvtanács), 2004. 6. BULBOACĂ, TEODOR - SALAMON, JULIA : Komplex Analizis II. Feladatok és megoldások, Cluj-Napoca, Editura Abel (Erdely Tankönyvtanács), 2002. 7. MAYER, OCTAV : Teoria funcţiilor de o variabilă complexă (vol. I, II), Bucureşti, Editura Academiei Române, 1981-1990. 8. STOILOV, SIMION : Teoria funcţiilor de o variabilă complexă (vol. I, II), Bucureşti, Editura Academiei Române, 1954-1958. 9. CĂLUGĂREANU, GHEORGHE : Elemente de teoria funcţiilor de o variabilă complexă, Bucureşti, Editura Didactică şi Pedagogică, 1963. 10. MOCANU, PETRU : Funcţii complexe, Cluj-Napoca, Lit. Univ. Cluj, 1972. |
Assessment |
Exam. Student tests during the semester; their average represents 1/3 from the final score. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |