Universitatea "Babes-Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
FISA DISCIPLINEI

Algebra 2 (Structuri algebrice de baza)
Cod
Semes-
trul
Ore: C+S+L
Tipul
Specializarea
MML0004
2
2+2+0
obligatorie
Matematica
MML0004
2
2+2+0
obligatorie
Matematică informatică
MML0004
2
2+2+0
obligatorie
Matematici aplicate
Cadre didactice indrumatoare
Prof. Dr. MARCUS Andrei,  marcusmath.ubbcluj.ro
Conf. Dr. BREAZ Simion Sorin,  bodomath.ubbcluj.ro
Obiective
Noţiuni şi rezultate de bază legate de structurile algebrice.
Continut
Cap. I. GRUPURI
1. Grupuri, morfisme, subgrupuri: rezultate si exemple de baza. (2 ore curs+2 ore seminar)
2. Grupuri de permutari. (1+1)
3. Laticea subgrupurilor, subgrup generat de o submultime. (1+1)
4. Grupuri ciclice, ordinul unui element, grupuri diedrale. (2+2)
5. Relatii de echivalenta induse de un subgrup, teorema lui Lagrange. (2+2)
6. Subgrupuri normale. Grup factor. Exemple (2+1)
7. Teoreme de izomorfism pentru grupuri. (2+2)
8. Produse de grupuri si subgrupuri. (1+2)
9. Automorfisme interioare, clase de conjugare (1+1)
10. Teoreme de clasificare pentru grupuri de ordin mic. (2+2)
Cap. II. INELE SI CORPURI
1. Inele si corpuri: rezultate si exemple de baza. (2+2)
2. Morfisme, subinele, subcorpuri. (2+2)
3. Inelul claselor de resturi mod n. Inele de functii, inele de matrici. (2+2)
4. Inele de polinoame. (3+3)
Cap. III. MODULE SI ALGEBRE
1. Module peste inele comutative. Algebre. (1+1)
2. Morfisme, submodule, subalgebre. (2+2)

Bibliografie
1. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003.
2. I.D. ION, N. RADU, Algebra (ed.4), Ed. Didactica si Pedagogica, Bucuresti 1991.
3. J. ROTMAN, Advanced modern algebra, Prentice Hall, NJ 2002.
4. G. CALUGAREANU, P. HAMBURG: Exercises in basic ring theory, Kluwer, Dordrecht 1998.
5. S. CRIVEI: Basic Abstract Algebra, Casa Cartii de Stiinta, Cluj-Napoca 2002.
6. A. MARCUS : Algebra [http://math.ubbcluj.ro/~marcus]
7. J. SZENDREI: Algebra es szamelmelet, Tankonyvkiado, Budapest 1993.
8. M. BALINT, G. CZEDLI, A. SZENDREI: Absztrakt algebrai feladatok, Tankonyvkiado, Budapest1988.
9. G. SCHEJA, U. STORCH: Lehrbuch der Algebra 1,2, B.G. Teubner, Stuttgart 1994
10. M. ARTIN: Algebra, Birkhauser, Basel 1998.
11. I. PURDEA, C. PELEA, Probleme de algebra, EFES Cluj-Napoca 2005.



Evaluare
Teme de casa (20%). Examen (80%).
Legaturi: Syllabus-urile tuturor disciplinelor
Versiunea in limba engleza a acestei discipline
Versiunea in format rtf a acestei discipline