Algorithmic Combinatorics |
ter |
||||
Teaching Staff in Charge |
Assoc.Prof. BEGE Antal, Ph.D., begemath.ubbcluj.ro |
Aims |
We present some problems and recent results concerning arithmetical functions, prime numbers pseudo prime numbers and about special combinatorial problems. |
References |
1. AIGNER, M.-ZIEGLER, G. M.: Proofs from the BOOK, Springer Verlag, 1998.
2. AIGNER, M.-ZIEGLER, G. M.: Bizonyitasok a KONYVBOL, Budapest: Typotex, 2004. 3. BACH E.- SHALLIT, J.: Algorithmic number theory, Cambridge: MIT Press, 1996. 4. BEGE, ANTAL: Beveztes a szamelmeletbe, Cluj Napoca: Scientia Kiado, 2002. 5. BEGE, ANTAL-DEMETER, ALBERT-LUKACS ANDOR: Szamelmeleti feladatgyujtemeny, Cluj Napoca: Scientia Kiado, 2002. 6. BRESSOUD, D.-WAGON, S.: A course in computational number theory, Springer Verlag, 2000. 7. ERDOS, P.-GRAHAM, R. L.: Old and new problems and results in combinatorial number theory, L. Enseigment Math., 1980. 8. GRAHAM, R. L.-KNUTH D, E-PATASHNIK, O.: Konkret matematika, Budapest: Muszaki Konyvkiado, 1998. 9. VAN LINT, J. H.-WILSON, R. M.: A course in combinatorics., Cambridge: Cambridge University Press, 2001. |
Assessment |
Exam |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |