"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Numerical Methods in Optimization
Code
Semes-
ter
Hours: C+S+L
Type
Section
MO260
2
2+2+0
compulsory
Analiza Reala si Complexa - în limba engleza
Teaching Staff in Charge
Prof. LUPSA Liana, Ph.D.,  llupsamath.ubbcluj.ro
Aims
Getting to know some significant numerical methods for solving the optimization problems.
Content
1. Numerical methods to minimize the unimodal functions.
2. Numerical methods to minimize the unconstrained function: decreasing methods, conjugated directions methods, relaxation methods, methods whithout the hypothesis of differentiability.
3. Numerical methods with feasible directions,
4 .Numerical methods based on reducing constrained problems to unconstrained ones
5. Cutting methods,
6. Inner point methods
7. Branch and bound methods.
8. Specific methods to solve fractional, hyperbolic and quadratic programming problems are studied, too.
9. Methods to solve liniar optimisation problems: simplex methods, Hacian's method, Karmarkar's method.
References
1. ANDREI N., Programare matematica avansata. Teorie, metode computationale, aplicatii. Bucuresti: Ed. Tehnica, 1999.
2. BRECKNER W.W.: Cercetare operationala, Univ.Babes-Bolyai, Cluj-Napoca ,1981.
3. BRECKNER W.W., DUCA D.I.: Culegere de probleme de cercetare operationala, Universitatea, Cluj-Napoca, 1983.
4. FORGO F., Nonconvex programming. Budapest: Akademiai Kiado, 1988.
5. PADBERG M.: Linear Optimization and Extensions, Springer-Verlag,Berlin, 1995
6. PANIK M.J.: Linear Programming: mathematics, theory and algorithms, Kluwer Academic Publishers, Dordrecht, 1996.
7. VOSE M.D., The simple Genetic Algorithm: Foundations and Theory. Cambrige: MIT Press, MA, 1998.
Assessment
Project and Prezentation.
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject