Special Topics in Combinatorics |
ter |
||||
Teaching Staff in Charge |
Prof. KASA Zoltan, Ph.D., kasacs.ubbcluj.ro |
Aims |
Familiarization with the combinatorics notions, which are not treated in other courses, with applications in Computer Science. |
Content |
1. Generalization of combinations and permutations.
2. Generating functions. 3. Counting and enumerating problems. Using generating functions in counting problems. 4. Remarkable numbers in combinatorics (Fibonacci, Catalan, Stirlin, Bell) 5. Principles in combinatorisc (pigeonhole pr., longest path pr. in garphs, pr. of inclusion and exclusion). 6. Combinatorics of words. Complexity of finite and infinite words. De Bruijn graphs. Applications to networks. |
References |
1. Z. KÁSA: Combinatorica cu aplicatii, Ed. Presa Universitara Clujeana, 2003.
2. I. TOMESCU: Introducere in combinatorica, Ed. Tehnica, 1975. 3. CORMEN-LEISERSON-RIVEST: Algoritmusok, Muszaki Könyvkiadó, Budapest, I. kiadás 1997, II. kiadás 1999, III. kiadás 2000. (IN ROMANA:. Cormen-Leiserson-Rivest: Introducere in algoritmi, Ed. Libris Computer Agora, 2000.IN ENGLEZA: Cormen, T.H., Leiserson, C.E., Rivest, R.R., Stein, C.: Introduction to Algorithms, Mit Press-McGraw Hill, 2001. Second edition) 4. LOVÁSZ LÁSZLÓ: Kombinatorikai problémák és feladatok, Typotex Kiadó, Budapest, 1999. 5. R. L. GRAHAM-D. E. KNUTH-O. PATASHNIK: Konkrét matematika, Műszaki Kiadó, Budapest, 1998. 6. LOTHAIRE, M.: Algebraic combinatorics on words, Cambridge University Press, 2002. 7. WILF, H, S.: Geratingfunctionology, Academsi Press, Boston, 1996. |
Assessment |
Homework + written exam 50-50%. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |