Universitatea "Babes-Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
FISA DISCIPLINEI

Geometrie riemanniană
Cod
Semes-
trul
Ore: C+S+L
Credite
Tipul
Specializarea
MG004
5
2+1+0
6
obligatorie
Matematică
MG004
5
2+1+0
5
optionala
Matematică-Informatică
Cadre didactice indrumatoare
Prof. Dr. VARGA Csaba Gyorgy,  csvargacs.ubbcluj.ro
Conf. Dr. PINTEA Cornel,  cpinteamath.ubbcluj.ro
Obiective
Cursul are ca scop constructia principalelor instrumente necesare in studiul geometriei Riemanniene. Cursul este orientat in urmatoarele directii: campuri Jacobi, imersii izometrice, spatii de curbura constanta, variatia integralei de energie, teorema de comparare Rauch-Riemann, teorema de index a lui Morse si teorema sferei.
Continut
1.Varietati riemanniene si pseudoriemanniene. Exemple. Ecuatiile Euler-Lagrange ale unei functionale de tip integrala. Geodezice pe o varietate riemanniana. Conexiune riemanniana. Transport paralel Levi-Civita. Tensorul lui Riemann si curbura riemanniana.
2.Campuri Jacobi: Ecuatia lui Jacobi. Puncte conjugate. A doua forma fundamentala. Ecuatia fundamentala.
3. Varietati Riemann complete: Teorema lui Hopf-Rinow. Teorema lui Hadamard. Spatii hiperbolice. Izometriile spatiilor hiperbolice. Prima si a doua formula de variatie pentru integrala de energie. Teorema de comparare a lui Rauch si aplicatii. Teorema indexului a lui Morse. Teorema sferei.
Bibliografie
1. BESSE, A.E.: Einstein Manifolds, Springer, 1987
2. BOOTHBY, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry (ed. a doua), Academic Press, 1986
3. DO CARMO, M.P.: Riemannian Geometry, Birkhauser, 1992
4. CHAVEL, I.: Riemannian Geometry: A Modern Introduction, Cambridge University Press, 1993
5. CHEEGER, J. - EBIN, D.G.: Comparison Theorems in Riemannian Geometry, North-Holland, 1975
6. CHERN, S.S. - CHEN, W.H. - LAM, K.S.: Lectures on Differential Geometry, World Scientific, 1999
7. GALLOT, S. - HULIN, D. - LAFONTAINE, J.: Riemannian Geometry, Springer, 1987
8. GOLDBERG, S.I.: Curvature and Homology, Dover, 1998
9. KOBAYASHI, S. - NOMIZU, K.: Foundations of Differential Geometry, vol. I-II, Interscience, 1963, 1969
10. LEE, J.M.: Riemannian Manifolds: An Introduction to Curvature, Springer, 1997
11. MORGAN, F.: Riemannian Geometry: A Beginner's Guide, Jones and Bartlett, 1993
12. O'NEILL, B.: Semi-Riemannian Geometry with Applications to General Relativity, Academic Press, 1983
13. POSTNIKOV, M.M.: Geometry VI: Riemannian Geometry, Springer, 2001

Evaluare
30% din nota finala activitate din timpul anului
70% din nota finala lucrare scrisa