"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Algorithmic combinatorics
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MO265
2
2+2+0
9
compulsory
Matematică Computaţională - în limba maghiară
Teaching Staff in Charge
Assoc.Prof. BEGE Antal, Ph.D.,  begemath.ubbcluj.ro
Aims
We present some problems and recent results concerning arithmetical functions, prime numbers pseudo prime numbers and about special combinatorial problems.
References
1. AIGNER, M.-ZIEGLER, G. M.: Proofs from the BOOK, Springer Verlag, 1998.
2. AIGNER, M.-ZIEGLER, G. M.: Bizonyitasok a KONYVBOL, Budapest: Typotex, 2004.
3. BACH E.- SHALLIT, J.: Algorithmic number theory, Cambridge: MIT Press, 1996.
4. BEGE, ANTAL: Beveztes a szamelmeletbe, Cluj Napoca: Scientia Kiado, 2002.
5. BEGE, ANTAL-DEMETER, ALBERT-LUKACS ANDOR: Szamelmeleti feladatgyujtemeny, Cluj Napoca: Scientia Kiado, 2002.
6. BRESSOUD, D.-WAGON, S.: A course in computational number theory, Springer Verlag, 2000.
7. ERDOS, P.-GRAHAM, R. L.: Old and new problems and results in combinatorial number theory, L. Enseigment Math., 1980.
8. GRAHAM, R. L.-KNUTH D, E-PATASHNIK, O.: Konkret matematika, Budapest: Muszaki Konyvkiado, 1998.
9. VAN LINT, J. H.-WILSON, R. M.: A course in combinatorics., Cambridge: Cambridge University Press, 2001.
Assessment
Exam