"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Multiobjective optimization
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MO011
8
2+2+0
6
optional
Matematici aplicate
Teaching Staff in Charge
Assoc.Prof. LUPSA Liana, Ph.D.,  llupsamath.ubbcluj.ro
Lect. POPOVICI Nicolae, Ph.D.,  popovicimath.ubbcluj.ro
Aims
Presentation of the main notions and results about vector optimization problems.
References
1. BACIU A., PASCU A., PUSCAS E.: Aplicatii ale cercetarii operationale. Bucuresti, Editura Militara, 1988.
2. GALPERIN G. A.: Nonscalarized Multiobjective Global Optimization. J.O.T.A., 75, 1, 69-85 (1972).
3. LUPSA L.: Asupra structurii solutiilor esential eficiente ale unei probleme de programare vectoriala intreaga. Seminarul itinerant de ecuatii functionale, aproximare si convexitate, Cluj-Napoca, 16-17 mai 1979.
4. LUPSA L.: On the hierarchy of the efficient points in linear multiple objective programs with zero-one variables. Rev. l'anal. num. et la theorie de l'approx., 9, 195-205 (1980).
5. LUPSA L.: On the relationship between efficient points and d-bases. "Babes-Bolyai" University, Cluj-Napoca, Faculty of Mathematics. Research seminars. Seminar of Mathematical Analysis. Preprint nr. 7, 1992, 87-100.
6. LUPSA L., DUCA E., DUCA D. : On the structure of the set of points dominated and nondominated in an optimization problem. Rev. d'Anal. num. et la theorie de l'approximation, 22, 2, 193-199 (1993).
7. SAWARAGI Y., NAKAYAMA H., TANINO T.: Theory of Multiobjective Optimization. San Diego - New York - London - Toronto - Montreal - Tokyo, Academic Press, 1985.
8. STADLER W.: A survey of multicriteria optimization on the vector maximum problem. Part: 1776-1960. J. Optim. Theory Appl., 29, 1-52 (1976).
9. STANCU-MINASIAN M.: Programare stochastica cu mai multe functii obiectiv. Bucuresti, Editura Academiei R.S.R., 1980.
Assessment
Colloquy.