"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Supplement of mathematica analysis
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MO009
7
2+2+0
6
optional
Matematică
MO009
7
2+2+0
6
optional
Matematică-Informatică
Teaching Staff in Charge
Lect. FINTA Zoltan, Ph.D.,  fzoltanmath.ubbcluj.ro
Aims
Presentation of the main complementary notions and results in Mathematical Analysis.
Content
1.Inequalities.
2. Sequences. Generalizations of the notion of limit.
3. Limits of functions. Generalizations of the notion of limit of a function.
4. Continuous functions. Generalizations of the notion of continuity. Special classes of continuous functions.
5. Generalization of the notion of derivativ. Generalizations of the mean theorems of the differential calculus.
6. Integrable functions. Generalization of the notion of the integral. The role of the systems of intermediary points in the definition of the integral.
References
1. ANDRICA D., DUCA D., PURDEA I. SI POP I.: Matematica de baza, Editura Studium, Cluj-Napoca, 2001
2. BALAZS M., KOLUMBAN J.: Matematikai analizis, Dacia Konyvkiado, Koloszvar-Napoca, 1978
3. BRECKNER W.W.: Analiza matematica. Topologia spatiului Rn, Universitatea din Cluj-Napoca,Facultatea de matematica, Cluj-Napoca, 1985
4. COBZAS ST.: Analiza matematica (Calcul diferential), Presa Universitara Clujeana, Cluj-Napoca, 1997
5. DUCA D. SI DUCA E.: Analiza matematica. Culegere de probleme, Editura GIL, Zalau, 1999
6. MEGAN M.: Bazele analizei matematice, Editura Eurobit, Timisoara, 1998
7. NICULESCU V.: Fundamentele analizei matematice, Editura Academiei Romane, Bucuresti, 1997
8. RUDIN W.: Principles of Mathematical Analysis, McGraw Hill, New York, 1964
9. SIRETCHI GH.: Calcul diferential si integral, Editura Stiintifica si Enciclopedica, Bucuresti, 1985
Assessment
Exam.