Algebra |
ter |
||||||||||||||
Teaching Staff in Charge |
|
Aims |
Basic notions and results concerning algebraic structures. |
Content |
The course presents notions and basic results concerning algebraic structures, namely groups, rings, division rings and modules, with the study of the induced substructures and factor structures and connections between them (correspondence theorems for (normal) subgroups, subrings (ideals) and the isomorphism theorems).
The basic principles of Linear Algebra (vector spaces, bases, dimension) are also discussed. |
References |
1. G.PIC, I. PURDEA: Tratat de algebra moderna, vol.1, Editura Academiei, 1977.
2. I. PURDEA, Tratat de algebra moderna, vol.2, Editura Academiei, 1982. 3. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003. 4. G. CALUGAREANU, Lectii de algebra liniara, Litografiat Univ. Babes-Bolyai, 1995. 5. I.D. ION, N. RADU, Algebra (ed.3-a), Editura Didactica si Pedagogica, 1981. 6. N. BOURBAKI, Algebre, chap.1 -3, Editura Hermann, 1970. 7. G. CALUGAREANU, P. HAMBURG: Exercises in basic ring theory, Kluwer Academic Publishers, Dordrecht, Boston 1998. 8. S. CRIVEI: Basic Abstract Algebra, Casa Cartii de Stiinta, Cluj-Napoca 2002. 9. M. BALINT, G. CZEDLI, A. SZENDREI: Absztrakt algebrai feladatok, Tankonyvkiado, Budapest1988. 10. A. MARCUS : Algebra [http://math.ubbcluj.ro/~marcus] 11. J. SZENDREI: Algebra es szamelmelet, Tankonyvkiado, Budapest1974. 12. G. SCHEJA, U. STORCH: Lehrbuch der Algebra 1,2, B.G. Teubner, Stuttgart 1994 13. M. ARTIN: Algebra, Birkhauser, Basel 1998. |
Assessment |
Exam. |