"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Geometry
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MMG0002
2
3+2+0
6
compulsory
Informatică
Teaching Staff in Charge
Prof. ANDRICA Dorin, Ph.D.,  dandricamath.ubbcluj.ro
Prof. VARGA Csaba Gyorgy, Ph.D.,  csvargacs.ubbcluj.ro
Assoc.Prof. PINTEA Cornel, Ph.D.,  cpinteamath.ubbcluj.ro
Lect. VACARETU Daniel,  vacaretumath.ubbcluj.ro
Aims
In the first part the course makes a gradual passage from the geometry studied in high-scholl to the principal notions of the three dimensional geometry and after that the objects of the three dimensional geometry are considered.
Content
I. Geometric transformations.
1. Izometries of euclidean plane: simetries, translations, rotations.
2. Homotety.
3. Inversion.
II. Analytical geometry of plane.
1. Vectorial space of free vectors.
2. Vectorial equations of straight lines.
3. Cartesian equations of straight lines in plane.
4. Circle.
5. Conics.
III. Analytical geometry in three-dimensional euclidean space.
1. Vectorial equations of straight lines and planes in space.
2. Cartesian equations of straight lines.
3. Cartesian equations of planes.
4. Sphere.
5. Cuadrics.
6. Generated surfaces.
References
1. ANDRICA, D., VARGA, CS., VACARETU, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997
2. ANDRICA, D., VARGA, CS., VACARETU, D., Teme si probleme alese de geometrie, Ed.Plus, Bucuresti,2002
3. GALBURA, GH., RADO, F., Geometrie, Ed. Did. si Ped. Bucuresti, 1979.
4. MIRON,R., Geometrie Analitica,Ed.Did. si Ped., Bucuresti, 1976.
5. MURGULESCU,E., si col.,Geometrie analitica si diferentiala,Ed.Did.si Ped.,Bucuresti,1971.
6. PINTEA, C., Geometrie, Presa Universitara Clujeana,2001.
7. UDRISTE, C., TOMULEANU, V., Geometrie analitica, Manual pentru clasa a-XI-a, Ed. Did si Ped. Bucuresti
Assessment
Exam.