Mathematical analysis 2 |
ter |
||||||||||||||
Teaching Staff in Charge |
|
Aims |
Getting to know the differential and integral calculus of the real functions of several real variables. |
Content |
The basic notions and results concerning the multivariable differential and integral calculus are presented. The main topics included are: differentiability of vector functions of vector variable, mean value theorems for differentiable functions, partial derivatives, optimality conditions, the inverse function theorem, differentiable implicit functions, optimization problems having equations as constraints, the Riemann integral of a real-valued function defined on an interval in R^n, the Riemann integral of a real-valued function defined on a bounded set in R^n, iterated integrals, Jordan measurable sets, Lebesgue's criterion of Riemann integrability, change of variables in the multiple Riemann integral. |
References |
l. BALÁZS M.: Matematikai analizis, Erdélyi Tankönyvtanács, Kolozsvár, 2000
2. BALÁZS M., KOLUMBÁN I.: Matematikai analizis, Dacia Könyvkiadţ, Kolozsvár-Napoca, 1978 3. BROWDER A.: Mathematical Analysis. An Introduction, Springer-Verlag, New York, 1996 4. BUCUR G., CÂMPU E., GĂINĂ S.: Culegere de probleme de calcul diferenţial şi integral, III, Editura Tehnică, Bucureşti, 1967 5. COBZAS ŞT.: Analiză matematică (Calcul diferenţial), Presa Universitară Clujeană, Cluj-Napoca, 1997 6. DEMIDOVICI B.P.: Culegere de probleme şi exerciţii de analiză matematică, Editura Tehnică, Bucureşti, 1956 7. HEUSER H.: Lehrbuch der Analysis, Teil 1, 11. Auflage, B. G. Teubner, Stuttgart, 1994; Teil 2, 9. Auflage, B. G. Teubner, Stuttgart, 1995 8. MEGAN M.: Calcul diferenţial şi integral în R^p, Universitatea de Vest, Timişoara, 2000 9. RUDIN W.: Principles of Mathematical Analysis, 2nd Edition, McGraw-Hill, New York, 1964 10. WALTER W.: Analysis, I, II, Springer-Verlag, Berlin, 1990 11. TRIF T.: Probleme de calcul diferential si integral în Rn. Cluj-Napoca: Casa Cartii de Stiinta, 2003. |
Assessment |
Exam. |