Celestical Mechanics |
ter |
|||||
Teaching Staff in Charge |
|
Aims |
The thoroughgoing study of unperturbed (keplerian) motion of celestial bodies. Solving general problems of Celestial Mechanics and Space Dynamics using some specific mathematical methods. The application of these results for the analysis of some concret problems in the dinamics of celestial bodies. Qualitative and topological methods used in celestial mechanics will be also presented. Computer simulations for the motion of natural and artificial celestial bodies will be performed. |
References |
1. ARNOLD, V. - KOZLOV, V.V. - NEISHTADT, A.: Mathematical Aspects of Classical and Celestial Mechanics. translated from the Russian by A. Iacob, Mir. Publishers, Moscow, 1988.
2. BOCCALETTI, D. - PUCACCO, G.: Theory of Orbits Volume 1: Integrable Systems and Non-Perturbative Methods. Springer-Verlag Berlin Heidelberg New York, 1998. 3. BOCCALETTI, D. - PUCACCO, G.: Theory of Orbits. Volume 2: Perturbative and Geometrical Methods. Springer-Verlag Berlin Heidelberg New York, 1999. BROWER, D. CLEMENCE, G.M.: Methods of Celestial Mechanics. Academic Press, New York, 1961 (trad. in l. rusa, Ed. Mir, Moscova, 1964) 4. DRÂMBA, C.: Elemente de mecanica cereasca. Ed. Tehnica, Bucuresti, 1958. 5. DUBOSIN, G. N.: Nebesnaya Mechanika. Osnovnie zadaci i metodi. Izd. Nauka, Moskva, 1963, 1968. 6. ÉRDI Bálint: Égi mechanika. Tankönyvkiadó, Budapest, 1992. 7. ÉRDI Bálint: A Napredszer dinamikája. ELTE Eötvös Kiadó, Budapest, 2001. 8. OPROIU, T. Et alii: Astronomie. Culegere de exercitii, probleme si programe de calcul. Univ. Babes-Bolyai din Cluj-Napoca, 1985, 1989. 9. ROJ, A.E.: Orbital Motion. Third Edition, Adam Hilger, Bristol and Philadelphia, 1988. |
Assessment |
Activity at the seminaries (40%).
Exam at the end of the term (60%). |