Projective geometry |
ter |
|||||
Teaching Staff in Charge |
|
Aims |
This course is an introduction in the syntetic and differential projective geometry. The course covers the following chapters: anarmonic rate, projections, affinities, the principle of duality, homogeneous coordinates, analitycal representation of projective transformations, projective groups, geomtry attached to a group.
|
Content |
I. Sintetic study
1. Anarmonic rate 2. Projections 3. Affinities 4. Similarity 5. The principle of duality. II. Analitical study 1. Homogeneous coordinates 2. Analitycal representation of projective transformations 3. Quadratical forms 4. Projective groups 5. Geomtry attached to a group. |
References |
1. VASIU A. -VASIU ANGELA, Geometrie proiectiva si structuri algebrice, 1998
2. HYGHENS D.-PIPER F., Projective planes, Springer Verlag, New-York, Heidelberg, Berlin, 1973 3. ANDRICA, D.-VARGA, CS.- VACARETU, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997 4. MIHAILEANU N. N., Elemente de geometrie proiectiva, Ed. Tehnica, Bucuresti, 1966 5. COXETER, H.S.M., A geometriak alapjai, Muszaki Konyvkiado, Budapest, 1973. 6. KEREKJARTO, BELA, Les Fondements de la Geometrie, Akademia Kiado, 1966. |
Assessment |
30% from the final mark is the activity during one semester
70% from the final mark is the mark from a written test. |