Dynamical systems |
ter |
||||||||||||||
Teaching Staff in Charge |
|
Aims |
The assimilation of the basic analytical and numerical methods in dynamical systems. |
Content |
1. Introduction: linear systems, types of nonlinearities, nonlinear behaiviours
2. Models in phase space: existence and uniqnuess, liniarization, autonomuous systems, phase portrait 3. Singular points, isocline, limit cycles, attractors, chaos 4. Harmonic analyse, oscilations, forced systems 5. Segmentar linear models 6. Stability: equilibrium points, Liapunov method, absolut stability 7. Discrete dynamical systems 8. Numerical methods for dynamical systems |
References |
1. COOK, P.A.: Nonlinear Dynamical Systems, Prentice-Hall, 1986.
2. TRIF, DAMIAN: Metode numerice in teoria sistemelor dinamice, Transilvania Press, 1997. 3. PETRILA, TITUS - TRIF, DAMIAN: Metode numerice si computationale in dinamica fluidelor, Ed. Digital Data Cluj, 2002. |
Assessment |
3 monthly tests 45% + exam 55%. |