Universitatea "Babes-Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
FISA DISCIPLINEI

Capitole speciale de ecuaţii cu derivate parţiale
Cod
Semes-
trul
Ore: C+S+L
Credite
Tipul
Sectia
ME042
8
2+2+0
7.5
optionala
Matematică
ME042
8
2+2+0
8
optionala
Matematică-Informatică
Cadre didactice indrumatoare
Prof. Dr. SZILAGYI Paul, szilagyp@cs.ubbcluj.ro
Obiective
Asimilarea unor metode actuale din teoria ecuatiilor cu derivate partiale.
Continut
Gradul topologic Browder si Leray-Schauder. Teoreme de punct fix. Operatori monotoni, maximal-monotoni, pseudo-monotoni. Teoreme de surjectie. Operatorul lui Nemâtchi. Spatii Sobolev, teoreme de scufundare. Probleme la limita pentru ecuatii eliptice si pentru sisteme eliptice neliniare. Probleme mixte pentru ecuatii parabolice neliniare. Inegalitati variationale.
Bibliografie
1. Adams, R.A., Sobolev spaces. Academic Press, 1975.
2. Deimling, K., Nonlinear functional analysis. Springer, Berlin-Heidelberg-New-York-Tokyo, 1985.
3. Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order. Springer, Berlin, 1983.
4. Chebrowski, I., Variational methods for potential operator equations with applications to nonlinear elliptic equations. W. de Gruyter Studies in Mathematics. 24. Berlin, 1997.
5. Pascali, D., Sburlan, S., Nonlinear mappings of monotone type. Ed. Acad. And Sijthoff & Noorhoff, Bucuresti, Alphen, 1978.
6. Pascali, D., Topological methods in nonlinear analysis. Lecture notes in Mathematics, Univ. Constanta-New-York University, Courant Institute, 2001.
7. Precup, R., Ecuatii integrale neliniare. UBB Cluj, 1993.
8. Sburlan, S., Topological and functional methods for partial differential equations. Univ. Constanta, 1985.
9. Szilágyi P., Elliptic systems with discontinuous nonlinearity. Studia UBB, Math. XXXIX.4.1994, p. 11-20.
Evaluare
Examen.