Capitole speciale de teoria grafelor | Selected topics of graph theory |
trul |
|||||
(Mathematics-Computer Science) |
|||||
(Computer Science) |
Cadre didactice indrumatoare | Teaching Staff in Charge |
Conf. Dr. TOADERE Teodor, toadere@cs.ubbcluj.ro |
Obiective | Aims |
Dezvoltarea deprinderilor de modelare a viitorilor informaticieni. Formarea unei gandiri abstracte care ofera posibilitatea realizarii unor conexiuni complexe intre realitatea inconjuratoare si obiecte abstracte din domeniul teoriei grafelor. |
Forming the modelling skills of future computers scientists. Forming an abstract thinking that offers the possibility to realize complex connections between the environment and abstract objects from the graph theory. |
1. Grafe, definitii, tipuri, reprezentari;
2. Matrici asociate unui graf, unei relatii, unei permutari; 3. Metoda cautarii in adancime; 4. Colorarea grafelor; 5. Matroizi: definitii, baza, multimi independente si dependente, cicluri, 6. Poduri in grafe, aplicatii, 7. Inel celular, algebra celulara, grafe de baza; 8. Constantele inelelor celulare si relatii intre ele; 9. Scheme asociative; 10. Grafe: distanta-regulare;grafe Moore si n-goane generalizate; 11. Graful muchiilor (graful linie); |
1. Bannai E., Bannai E., How many P-polinomial structures can an association scheme have?, Europ. J. Comb. 1(1980)pp.289-298.
2. Biggs N.L., The symmetry of line graphs, Util. Math. 5(1974)pp.113-121. 3. Brouwer A.E., Cohen A.M., Neumaier A., Distance Regular Graphs, Springer Verlag, Berlin, 1989. 4. Croitoru C., Optimizare combinatorie, Ed.Univ."Al.I.Cuza", Iasi 1992. 5. Gondran M., Minoux, M.: Graphes et algorithmes, Paris 1979. 6. Ivanov A.A., Ivanov A.V., London Math. Soc. Lect. Notes Ser. vol.131(1988). 7. Faradev I.A., Ivanov A.A., Klin M.H., Woldar, Investigation in Combinatorial Objects, Kluwer Academic Publisher, 1994. 8. Lecture Notes Math. 558(1976). 9. Weiss R., s-transitive graph, In Algebraic Methods in Graph Theoty vol.2(1981), pp.827-847. 10. Weiss R., The non-existence of 8-transitive graph, Combinatorica 1(1981), pp.309-563. 11. Toadere T.,Stoica F.:Some Aspects of Graphs Planarity, Studia Mathematica, vol.XL(no.2,1995), pp.123-146. 12. Weiss R, Distance-transitive graphs and generalized polygons, Acth. Math. 45(1985), pp.555-563. |
Evaluare | Assessment |
Nota se compune din doua parti cu ponderi egale una obtinuta pe parcurs semestrului in urma prin prezentari de referate la seminar, iar ceealalta in final prin sustinerea unui examen. |
The final mark is composed from two parts having equal weights: one based on the activity during the semester (reports presentations), and the other based on the final examination. |