Universitatea "Babeş-Bolyai" din Cluj-Napoca

Facultatea de Matematică şi Informatică
FISA DISCIPLINEI

Geometrii neeuclidiene Noneuclidean geometry
Cod
Semes-
trul
Ore: C+S+L
Credite
Tipul
Sectia
MG022
5
2+1+0
6
optionala
Matematică
(Mathematics)
Cadre didactice indrumatoare Teaching Staff in Charge
Conf. Dr. VARGA Csaba Gyorgy, csvarga@cs.ubbcluj.ro
Obiective Aims
Cursul are ca scop constructia principalelor instrumente necesare in studiul
geometriilor neeuclidiene din punct de vedere diferential si din punct de
vedere sintetic. Cursul este orientat in urmatoarele directii: fibratul tangent,
metrica Riemann, conexiunea Levi-Civita, geodezice, tensorul de curbura a lui
Riemann, curbura sectionala, spatii cu curbura constanta, geometria eliptica,
geometria hiperbolica, modele euclidiene.
The main purpose of the course consists in construction of the principal instruments which are necessary in studying the the Non-Euclidian geometry. The following notions and results are studied: Riemannian metric, Levi-Civita conexion,
geodesics, Riemannian curvature tensor, sectional curvature, space of constant curvature, elliptic geometry, hyperbolic geometry, euclidian models.
Continut
1. Fibratul tangent
2. Metrica Riemann
3. Conexiunea Levi-Civita
4. Geodezice
5. Tensorul e curbura a lui Riemann
6. Curbura sectionala
7. Spatii cu curbura constanta
8. Geometria eliptica
9. Geometria hiperbolica
10. Modele euclidiene
Bibliografie
1. M.P. do Carmo, Riemannian geometry, Birkhauser, 1992
2. S. Gallot, D. Hulin, J. Lafontain, Riemannian geometry, Springer-Verlag, Berlin, 1990
3. H.S.M. Coxeter, Non-Euclidian Geometry, Math. Assoc. of America , 1998
4. B.V. Cutuzov, Geometria lui Lobacevschi si elementele de baza ale geometriei, Editura Tehnica, 1952
5. I.M. Jaglom, Galilei relativitasi elv, Gondolat, Budapest, 1985

Evaluare Assessment
Examen
Exam