Procese stochastice | Stochastic processes |
trul |
|||||
(Applied Mathematics) |
Cadre didactice indrumatoare | Teaching Staff in Charge |
Prof. Dr. MIHOC Ion, imihoc@math.ubbcluj.ro |
Obiective | Aims |
A da studentilor notiunile de baza privind procesele stochastice care permit modelarea si rezolvarea diverselor fenomene economice, sociale si de alta natura. |
To give to the students the principal notions of the stochastic processes which are necessary in the model process of the economic fenomens. |
1. Procese stochastice ce depind de un parametru discret. Procese stochastice: definitii si clasificare. Lanturi Markov. Matricea probabilitatilor de trecere. Relatia lui Chapman-Kolmogorov. Lanturi Markov omogene: definitii si proprietati. Clasificarea starilor unui lant Markov. Studiul matricei probabilitatilor de trecere asociata unui lant Markov. Grafe asociate matricelor stochastice. Lanturi Markov ergodice. Studiul lanturilor Markov cu ajutorul transformatei z.
2. Procese stochastice ce depind de un parametru continuu. Procese stochastice de tip continuu. Procese Markov de tip continuu. Procese Markov omogene. Procese Poisson. Proces pur de nastere.Proces pur de moarte.Procese de nastere si moarte. 3. Aplicatii ale proceselor stochastice in teoria asteptarii. Descrierea unui fenomen de asteptare. Determinarea repartitiei dintre doua serviri succesive, respectiv, dintre doua sosiri consecutive. Modelul I: o statie de servire, un sir de asteptare, veniri dintr-o populatie infinita. Modelul II: mai multe statii de servire, un sir de asteptare, populatie infinita. Modelul III: o statie, un sir de asteptare limitat si inchis.Modelul IV: o statie, un sir de asteptare, populatie finita. 4. Procese de reannoire. Functia de repartitie. Functia de reannoire. Lanturi de reannoire. Procese stochastice asociate unui proces de reannoire. |
1. Bharucha-Reid, A.T., Elements of the Theory of Markov Processes and their Applications, McGraw-Hill Book Company, Inc, Now York. Toronto. London, 1960.
2. Iosifescu, M., Lanturi Markov finite si aplicatii, Ed. Tehnica, Bucuresti, 1977. 3. Iosifescu, M., Grigorescu, S., Oprisan, Gh., Popescu, Gh., Elemente de modelare stochastica, Ed. Tehnica, Bucuresti, 1971. 4. Karlin, S., A first cours in stochastic processes, Academic Press, New York and London, 1966 5. Mihoc, Gh., Bergthaller, C., Ursianu, V., Procese stochastice, Ed.Stiintifica si Enciclopedica, Bucuresti, 1978. |
Evaluare | Assessment |
Examen. |
Exam. |