"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Real analysis (2)
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MT002
5
2+1+0
6
optional
Matematică
MT002
5
2+1+0
6
optional
Matematică
Teaching Staff in Charge
Prof. NEMETH Alexandru, Ph.D., nemab@math.ubbcluj.ro
Assoc.Prof. ANISIU Valer, Ph.D., anisiu@math.ubbcluj.ro
Aims
Basic selected topics in general topology and measure theory, solid background for other courses like functional analysis or differential geometry.
Content
1. GENERAL TOPOLOGY. Ordered sets, nets and filters. Characteriations of
topological properties using nets and filters. Separation axioms (T3,T4),
Uryson's lemma. Product spaces, Tychonoff's theorem, metrizability of a countable
product of topological spaces. Baire spaces, generic properties. Metrizability of
topological spaces. Classification of topological spaces using Venn diagrams.
2. MEASURE THEORY. Convergence types for sequences of measurable functions:
almost uniform convergence, a.e. convergence, convergence in measure, Egorov's
and Riesz's theorems. L^p spaces, completeness, the density of continuous functions,
the Hilbert space L^2. Fourier series, Diriclet and Fejer kernels, localization
principle, pointwise and uniform convergence.
Real measures, positive, negative and total variation, Radon-Nikodym theorem,
Jordan decomposition. Measure and integral on product spaces,
Fubini's theorem. Radon derivatives and absolute continuous functions.
References
1. V. Anisiu: Topologie si teoria masurii. Universitatea "Babes-Bolyai", Cluj-Napoca, 1995.
2. N. Boboc, Gh. Bucur: Masura si capacitate. Ed. Stiintifica si enciclopedica, Bucuresti, 1985.
3. B. Gostiaux: Exercises de mathematiques speciales, Tome 2, Presse Universitaire de France, 1997.
4. J. Kelley: General topology. Van Nostrand, Princeton, 1950.
5. P. Kree: Integration et theorie de la mesure. Une approche geometrique. Ellipses, Paris, 1997
6. W. Rudin: Real and complex analysis, McGraw Hill, New York, 1988 (exista traducere in limba romana)
Assessment
Exam.