"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Celestical Mechanics
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MM004
8
2+2+0
7.5
optional
Matematică
MM004
8
2+2+0
7.5
optional
Matematică-Informatică
Teaching Staff in Charge
Lect. SZENKOVITS Ferenc, Ph.D., fszenko@math.ubbcluj.ro
Assoc.Prof. BARBOSU Mihai, Ph.D., mbarbosu@math.ubbcluj.ro
Aims
The thoroughgoing study of unperturbated (keplerian) motion of celestial bodies. Solving general problems of Celestial Mechanics and Space Dynamics using some specific mathematical methods. The application of these results for the analysis of some concrete problems of dynamics for different celestial bodies. Introduction of qualitative and topological methods of Celestial Mechanics. Developping software for simulating the motion of natural and artificial celestial bodies.
References
1. Arnold, V., Kozlov, V.V., Neishtadt, A. - Mathematical Aspects of Classical and Celestial Mechanics, translated from the Russian by A. Iacob, Mir. Publishers, Moscow, 1988.
2. Brouwer, D. Clemence, G.M. - methods of Celestial Mechanics, Academic Press, New York, 1961 (trad. in l. rusa, Ed. Mir, Moscova, 1964)
3. Dramba, C. - Elemente de mecanica cereasca, Ed. Tehnica, Bucuresti, 1958.
4. Duboshin, G.N. - Nebesnaya Mechanika. Osnovnie zadaci i metodi, Izd. Nauka, Moskva, 1963, 1968.
5. Duboshin, G.N. - Analiticeskie i kacestvennie metodi, Idem, 1964.
6. Grebenicov, E.A., Ryabov, Yu.A. - Constructive Methods in the Analysis of Nonlinear Systems, Mir Publishers, Moscow, 1983.
7. Oproiu, T., Pal, A., Pop, V., Ureche, V. - Astronomie. Culegere de exercitii, probleme si programe de calcul, Univ. Babes-Bolyai din Cluj-Napoca, 1985, 1989.
8. Roy, A.E. - Orbital ,Motion, Third Edition, Adam Hilger, Bristol and Philadelphia, 1988.
Assessment
Exam at the end of the term.