Homotopy theory |
ter |
|||||
Teaching Staff in Charge |
Prof. ANDRICA Dorin, Ph.D., dandrica@math.ubbcluj.ro |
Aims |
The course construct the main mathematical instruments necessary in the homotopic study of topological spaces. |
Content |
1. The fundamental group, fiber bundles and covering spaces.
2. High order homotopy groups. 3. The exact homotopy sequence of a topological pair. 4. The homotopy groups of a product of two spaces. 5. Some representations of homotopy groups as direct sums. 6. The homotopy groups of a fiber bundle and a covering spaces. 7. The homotopy groups of some particular spaces. |
References |
1. Andrica,D.,Pintea,C.,Elemente de teoria omotopiei cu aplicatii la studiul punctelor critice, Editura Mirton, Timisoara, 2002
2. Greenberg, M.J., Harper, J.R., Algebraic Topology. A first course, Addison-Wesley, 1981. 3. Godbillon, C., Elements de topologie algebrique, Hermann, Paris, 1971. 4. Husemoller, D., Fibre Bundles, McGrow-Hill Book Company. 5. Sze Tzen Hu, Homotopy Theory, Academic Press New York and London, 1959. |
Assessment |
Exam. |