Mathematical economy |
ter |
|||||
Teaching Staff in Charge |
Prof. PETRUSEL Adrian Olimpiu, Ph.D., petrusel@math.ubbcluj.ro Lect. BUICA Adriana, Ph.D., abuica@math.ubbcluj.ro |
Aims |
To provide basic notions and main tools in the field of mathematical economies: multivalued analysis, maximal elements, eqilibrium points. To apply these tools in the theory of equilibrium of an abstract economy.
|
Content |
1. Description of an economy. Arrow-Debreu model.
2. Multi-valued operators and fixed points for single-valued and multi-valued mappings. 3. KKM theory and variational inequalities. Optimal preferences. 4. Walrasian equilibrium of an economy. 5. Elements of game theory. |
References |
1) J.W.S.Cassels, Economics for mathematicians, Cambridge Univ.Press, 1989.
2) A.Mas-Colell, An introduction to the differentiable approach in the theory of economic equilibrium, Univ.of California, Berkley, 1978. 3) M.Geistdoerfer-Florenzano, L'equilibre economique general transitif et intransitif. Problemes d'existence, CEPREMAP, Paris, 1980. 4) J.P.Aubin, Optima and Eqilibria, Springer, Berlin, 1993. 5) G.X.Z. Yuan, KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999. 6. K. Border, Fixed point theorems with applications to economic and game theory, Cambridge University Press, London, 1985. 7) A. Petrusel, Multifunctii si aplicatii, Presa Univ. Clujeana, Cluj-Napoca, 2001. |
Assessment |
Exam. |