"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Nonlinear partial differential equations
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
ME274
2
2+1+1
7
optional
Matematică Aplicată
Teaching Staff in Charge
Prof. PRECUP Radu, Ph.D., r.precup@math.ubbcluj.ro
Aims
Content
The aim of this course is to present some methods for the treatment of nonlinear elliptic problems.I. Preliminaries of Linear Elliptic Equations: Sobolev spaces, Dirichlet's principle, weak solutions, eigenvalues, maximum principle.II. Fixed Point Methods: the operator form of the Dirichlet problem (in $H_{0}^{1}\left( \Omega \right) $); applications of the Banach, Schauder, Krasnoselskii fixed point theorems; application of the Leray-Schauder fixed point theorem.III. Upper and Lower Solutions Method: ordered Banach spaces, normal and regular cones, monotone iterative principles in ordered Banach spaces, upper and lower solutions of the Dirichlet problem.
References
1. R. Precup, Ecuatii cu derivate partiale, Transilvania Press, Cluj, 1997.
2. D. O'Regan, R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001.
3. H. Brezis, cours DEA, Paris VI, 1991.
4. H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.
Assessment