"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Selected topics of partial differential equations
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
ME042
8
2+2+0
7.5
optional
Matematică
ME042
8
2+2+0
8
optional
Matematică-Informatică
Teaching Staff in Charge
Prof. SZILAGYI Paul, Ph.D., szilagyp@cs.ubbcluj.ro
Aims
To asimilate the main methods in the theory of partial differential equations.
References
1. Adams, R.A., Sobolev spaces. Academic Press, 1975.
2. Deimling, K., Nonlinear functional analysis. Springer, Berlin-Heidelberg-New-York-Tokyo, 1985.
3. Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order. Springer, Berlin, 1983.
4. Chebrowski, I., Variational methods for potential operator equations with applications to nonlinear elliptic equations. W. de Gruyter Studies in Mathematics. 24. Berlin, 1997.
5. Pascali, D., Sburlan, S., Nonlinear mappings of monotone type. Ed. Acad. And Sijthoff & Noorhoff, Bucuresti, Alphen, 1978.
6. Pascali, D., Topological methods in nonlinear analysis. Lecture notes in Mathematics, Univ. Constanta-New-York University, Courant Institute, 2001.
7. Precup, R., Ecuatii integrale neliniare. UBB Cluj, 1993.
8. Sburlan, S., Topological and functional methods for partial differential equations. Univ. Constanta, 1985.
9. Szilágyi P., Elliptic systems with discontinuous nonlinearity. Studia UBB, Math. XXXIX.4.1994, p. 11-20.
Assessment
Exam.