Selected topics of partial differential equations |
ter |
|||||
Teaching Staff in Charge |
Prof. SZILAGYI Paul, Ph.D., szilagyp@cs.ubbcluj.ro |
Aims |
To asimilate the main methods in the theory of partial differential equations. |
References |
1. Adams, R.A., Sobolev spaces. Academic Press, 1975.
2. Deimling, K., Nonlinear functional analysis. Springer, Berlin-Heidelberg-New-York-Tokyo, 1985. 3. Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second order. Springer, Berlin, 1983. 4. Chebrowski, I., Variational methods for potential operator equations with applications to nonlinear elliptic equations. W. de Gruyter Studies in Mathematics. 24. Berlin, 1997. 5. Pascali, D., Sburlan, S., Nonlinear mappings of monotone type. Ed. Acad. And Sijthoff & Noorhoff, Bucuresti, Alphen, 1978. 6. Pascali, D., Topological methods in nonlinear analysis. Lecture notes in Mathematics, Univ. Constanta-New-York University, Courant Institute, 2001. 7. Precup, R., Ecuatii integrale neliniare. UBB Cluj, 1993. 8. Sburlan, S., Topological and functional methods for partial differential equations. Univ. Constanta, 1985. 9. Szilágyi P., Elliptic systems with discontinuous nonlinearity. Studia UBB, Math. XXXIX.4.1994, p. 11-20. |
Assessment |
Exam. |