Operational equations |
ter |
|||||
Teaching Staff in Charge |
Assoc.Prof. PETRUSEL Adrian Olimpiu, Ph.D., petrusel@math.ubbcluj.ro Lect. SERBAN Marcel Adrian, Ph.D., mserban@math.ubbcluj.ro |
Aims |
To provide various techniques and skills required for students to examine and solve several classes of operatorial equations. |
Content |
1. Fixed point theorems on the real axis
2. Coincidence points for functions defined on the real axis 3. Zero-point for functions defined on the real axis 4. Fixed point techniques for systems of operatorial equations 5. Functional equations 6. Examples from applied mathematics 7. Open problems |
References |
1. J.P. Aubin, H.Frankowska; Set-Valued Analysis,Birkhauser, Basel, 1990.
2. K. Deimling, Multivalued Differential Equations, W.de Gruyter, 1992. 3. A. Petrusel, Multifunctii si aplicatii, Presa Univ. Clujeana, Cluj-Napoca, 2001. 4. I.A. Rus, Principii si aplicatii ale teoriei punctului fix, Ed.Dacia, Cluj-Napoca,1979. 5. A. Petrusel, Operator Inclusions, Casa Cartii de Stiinta, Cluj-Napoca, 2002. 6. R. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, 2001. |
Assessment |
Exam. |