"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Operational equations
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
ME011
8
2+2+0
8
optional
Matematică-Informatică
Teaching Staff in Charge
Assoc.Prof. PETRUSEL Adrian Olimpiu, Ph.D., petrusel@math.ubbcluj.ro
Lect. SERBAN Marcel Adrian, Ph.D., mserban@math.ubbcluj.ro
Aims
To provide various techniques and skills required for students to examine and solve several classes of operatorial equations.
Content
1. Fixed point theorems on the real axis
2. Coincidence points for functions defined on the real axis
3. Zero-point for functions defined on the real axis
4. Fixed point techniques for systems of operatorial equations
5. Functional equations
6. Examples from applied mathematics
7. Open problems
References
1. J.P. Aubin, H.Frankowska; Set-Valued Analysis,Birkhauser, Basel, 1990.
2. K. Deimling, Multivalued Differential Equations, W.de Gruyter, 1992.
3. A. Petrusel, Multifunctii si aplicatii, Presa Univ. Clujeana, Cluj-Napoca, 2001.
4. I.A. Rus, Principii si aplicatii ale teoriei punctului fix, Ed.Dacia, Cluj-Napoca,1979.
5. A. Petrusel, Operator Inclusions, Casa Cartii de Stiinta, Cluj-Napoca, 2002.
6. R. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, 2001.
Assessment
Exam.