Geometrie riemanniană |
trul |
|||||
Cadre didactice indrumatoare |
Conf. Dr. VARGA Csaba Gyorgy, csvarga@cs.ubbcluj.ro Conf. Dr. PINTEA Cornel, cpintea@math.ubbcluj.ro |
Obiective |
Cursul are ca scop constructia principalelor instrumente necesare in studiul geometriei Riemanniene. Cursul este orientat in urmatoarele directii: campuri Jacobi, imersii izometrice, spatii de curbura constanta, variatia integralei de energie, teorema de comparare Rauch-Riemann, teorema de index a lui Morse si teorema sferei. |
Continut |
1.Varietati riemanniene si pseudoriemanniene. Exemple. Ecuatiile Euler-Lagrange ale unei functionale de tip integrala. Geodezice pe o varietate riemanniana. Conexiune riemanniana. Transport paralel Levi-Civita. Tensorul lui Riemann si curbura riemanniana.
2.Campuri Jacobi: Ecuatia lui Jacobi. Puncte conjugate. A doua forma fundamentala. Ecuatia fundamentala. 3. Varietati Riemann complete: Teorema lui Hopf-Rinow. Teorema lui Hadamard. Spatii hiperbolice. Izometriile spatiilor hiperbolice. Prima si a doua formula de variatie pentru integrala de energie. Teorema de comparare a lui Rauch si aplicatii. Teorema indexului a lui Morse. Teorema sferei. |
Bibliografie |
1. Carmo, M. do, Riemannian Geometry, Birkhausel, Boston, Berlin, 1992.
2. Gh. Gheorghiev, V. Oproiu, Varietati finit si infinit dimensionale, vol.I,II, Ed.Academiei R.S.R., 1976, 1979. 3. Doubrovine B., Novikov S., Fomenko A., Geometrie contemporaine, vol.I,II,III, Ed. Mir, 1985. 4. P. Sandovici, M. Tarina, Curs de Geometrie diferentiala, vol.I,II, (lito), Cluj-Napoca, 1974, 1976. |
Evaluare |
Examen, 2 lucrari de control in timpul semestrului. |