Convexitate în grafe şi reţele | Convexity in graphs and networks |
trul |
|||||
(College of Computer Technology) |
|||||
(Computer Science) |
Cadre didactice indrumatoare | Teaching Staff in Charge |
Conf. Dr. TOADERE Teodor, toadere@cs.ubbcluj.ro |
Obiective | Aims |
Formarea unei gandiri abstracte si familiarizarea cu domeniul analizei convexe in spatii metrice finite, grafe si retele. Cursul este conceput ca o paralela intre rezultatele din literatura, obtinute pentru grafe si cele obtinute de autor pentru retele, in domeniul analizei convexe. |
To achieve basic knowledges in the domain of convex analysis on metric spaces, finite metric spaces, graphs and networks. The lessons are conceived to be a parallel between the results obtained for graphs in convex analysis and the same theory in networks. |
1. Grafe, Retele: definitii, tipuri, reprezentari;
2. Matrici asociate unui graf; 3. Distanta in grafe si retele. Segmente metrice. 4. Multimi d-convexe in grafe si retele, invelitoarea convexa a unei multimi de virfuri; 5. Puncte extremale si puncte expuse, Proprietati de separare; 6. Clase de functii convexe pe grafe si pe retele, Proprietati supremale, de aditivitate si de separare; 7. Algoritmi de minimizare a functiilor convexe pe grafe si retele; 8. Probleme de optim pe grafe si retele. |
1. H.-J. Bandelt, Graphs with intrinsec S3 Convexities, J. Graph Theory, 13(2), 1989, 215-228.
2. P.M. Dearing, R.L. Francis, T.J. Lowe, Convex loction problems on tree networks, Oper. Res., 24, 1976, 628-634. 3. P. Duchet, H. Meyniel, Ensemble Convexes dans les Graphes. Theoremes de Helly et de Radon pour Graphes et Surfaces, Europ. J. Combinatorics, 4, 1983, 127-132. 4. M.G. Everett, S.B. Seidman, The hull number of a graph, Disc. Math., 57, 1985, 217-223. 5. M. Farber, R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Disc. Meth., 7, 1986, 433-444. 6. M. Farber, R.E. Jamison, On local convexity in graphs, Disc. Math., 66, 1987, 231-247. 7. M. Gondran, M. Minoux, Graphes et Algorithmes, Eyrolles, Paris, 1979. 8. F. Harary, J. Nieminen, Convexity in graphs, J. Diff. Geom., 16, 1981, 185-190. 9. M.E. Iacob, Convexitate, Aproximare si Optimizare pe Retele, Teza de doctorat, Universitatea Babes-Bolyai, 1997. 10. V.P. Soltan, V.D. Chepoi, Some classes of convex functions in graphs, Dokl. Akad. Nauk. SSSR, 273, 1983, 1314-1317. 11. A. Sochirca, V.P. Soltan, d-Convex functions in graphs, Mat. Issled, 11, 1988, 93-106. 12. V.P. Soltan, Introduction to Axiomatic Convexity Theory, Stiinta, Chisinau, 1984 (rusa). 13. V.P. Soltan Some properties of convex functions I, II, Amer. Math. Transl., 134 (2), 1987, 39-51. 14. V.P. Soltan, Metric convexity in graphs, Studia Univ. Babes-Bolyai Math., XXXVI (4), 1991, 3-43. |
Evaluare | Assessment |
Nota este media aritmetica a unei note pe care studentul o obtine in urma sustinerii unui examen oral la sfarsitul semestrului si a unei note pe care studentul o obtine in urma prezentarii in cursul semestrului la seminar a unui referat pe o tema data cu bibliografie precizata. |
Each student must get two marks: one for the presentation of an essay on a given subject (using a given bibliography) during the semester and the other for an exam at the end of the semester. The final mark is the mean value of the previous two marks. |