Geometrie computaţională | Computational geometry |
trul |
|||||
(Computational Mathematics - in Hungarian) |
Cadre didactice indrumatoare | Teaching Staff in Charge |
Conf. Dr. VARGA Csaba Gyorgy, csvarga@cs.ubbcluj.ro |
Obiective | Aims |
Cursul isi propune introducerea studentilor in geometria computationala. Geometria computationala este deosebit de importanta in multe domenii ale matematicilor aplicate si ale informaticii. La seminar se vor discuta unele dintre aceste aplicatii, completate cu exercitii menite sa contribuie la aprofundarea si clarificarea materialului la curs. |
The main purpose of the course is the introduction in computational geometry, an important subject for many topics in present applied mathematics and computer science. The seminars gives some impletations by examples, exercices and problems for the results given in the course |
I. Fundamente.
1. Fundamente algoritmice. 2. Conditii geometrice. 3. Modele de calcul. II. Intersectii. 1. Aplicatii plane. Intersectia poligoanelor convexe. Intersectia segmentelor de dreapta. Intersectia semiplanelor. 2. Aplicatii spatiale. Intersectia poligoanelor convexe. Intersectia semispatiilor. III. Invelitori convexe. 1. Constructia invelitorilor convexe in plan. 2. Invelitori convexe in dimensiuni mai mari decat doi. 3. Aplicatii in statistica. IV. Probleme de apropiere. 1. Problema celei mai apreopiate perechi. 2. Diagrama Voronoi. 3. Triangulari Delaunay. 4. Diagrame Voronoi generalizate. V. Grafuri de vizibilitate. 1. Drumul cel mai scurt 2. Calculul grafului de vizibilitate |
1. F.P. Preparata, M.I. Shamos - Computational Geometry, Springer, 1985
2. J. O'Rourke - Computational Geometry in C, Cambridge, 1993 3. M. de Berg - Computational Geometry, Springer, 1997 |
Evaluare | Assessment |
Examen. |
Exam. |