Geometric function theory |
ter |
|||||
Teaching Staff in Charge |
Assoc.Prof. CURT Claudia Paula, Ph.D., paula@math.ubbcluj.ro Prof. SALAGEAN Grigore Stefan, Ph.D., salagean@math.ubbcluj.ro |
Aims |
The presentation of principal classes of univalent functions defined by remarcable geometric properties and some of their applications in the theory of conformal mappings. |
Content |
The most important properties of univalent functions and the principal classes of univalent functions defined by remarcable geometric properties are presented: the classes S, sigma, tha class of functions of positive real part, starlike functions, convex functions, alfa convex functions. |
References |
1. P.L. Duren, Univalent functions, Springer Verlag, Berlin Heidelberg, 1994.
2. G.M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Mon., Amer. Math. Soc., 1969. 3. A.W. Goodman, Univalent functions, Mariner Publishing Company. 4. P. T. Mocanu, T. Bulboaca, G. St. Salagean, Teoria geometrica a functiilor univalente, Casa Cartii de Stiinta, 1999. 5. I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, M. Dekker, 2003. |
Assessment |
Exam. |