"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Operations research
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MO006
7
2+2+0
6
compulsory
Matematică
MO006
7
2+2+0
6
compulsory
Informatică
MO006
7
2+2+0
6
compulsory
Matematică-Informatică
MO006
7
2+2+0
6
compulsory
Matematica Economica
Teaching Staff in Charge
Lect. POPOVICI Nicolae, Ph.D., popovici@math.ubbcluj.ro
Assoc.Prof. KASSAY Gabor, Ph.D., kassay@math.ubbcluj.ro
Lect. BRECKNER Brigitte Erika, Ph.D., brigitte@math.ubbcluj.ro
Aims
This course is an introduction to operations research and to the mathematical theory of solving optimization problems.
Content
General principles of operations research; interdisciplinary models. Convex analysis on the n-dimensional Euclidean space; characterizations of convex and generalized convex functions. Constrained and unconstrained optimization problems; properties of minimum points of convex functions; necessary and sufficient optimality conditions; saddle-point theorems; duality theorems. Numerical methods for solving linear and nonlinear optimization problems: Simplex method, cutting planes method, penalty and barier functions methods. Introduction to game theory; the solution of two-persons games by means of linear optimization technique.
References
1. BRECKNER W. W.: Cercetare operationala. Cluj-Napoca, Universitatea "Babes-Bolyai", Fac. de Matematica, 1981.
2. BRECKNER W. W., DUCA D.: Culegere de probleme de cercetare operationala. Cluj-Napoca, Universitatea, Fac. de Matematica, 1983.
3. DOMSCHKE W., DREXL A.: Einfuhrung in Operations Research. 3. Aufl. Berlin, Springer-Verlag, 1995.
4. DOMSCHKE W., DREXL A., SCHILDT B., SCHOLL A., VOSS S.: Uebungsbuch Operations Research. 2. Aufl. Berlin, Springer-Verlag, 1997.
5. PREKOPA, A., Linearis programozas. Bolyai Tarsulat, Budapest, 1968.
Assessment
Written and oral examination.