"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Analytical geometry
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
MG020
2
2+2+0
5
compulsory
Matematică
MG020
1
2+1+0
5
compulsory
Informatică
MG020
2
2+2+0
5
compulsory
Matematică-Informatică
MG020
2
2+2+0
5
compulsory
Matematici Aplicate
Teaching Staff in Charge
Lect. VACARETU Daniel, vacaretu@math.ubbcluj.ro
Assoc.Prof. VARGA Csaba Gyorgy, Ph.D., csvarga@cs.ubbcluj.ro
Assoc.Prof. PINTEA Cornel, Ph.D., cpintea@math.ubbcluj.ro
Prof. ANDRICA Dorin, Ph.D., dandrica@math.ubbcluj.ro
Aims
In the first part the course makes a gradual passage from the geometry studied in high-scholl to the principal notions of the three dimensional geometry and after that the objects of the three dimensional geometry are considered.
Content
I. Geometric transformations.
1. Izometries of euclidean plane: simetries, translations, rotations.
2. Homotety.
3. Inversion.
II. Analytical geometry of plane.
1. Vectorial space of free vectors.
2. Vectorial equations of straight lines.
3. Cartesian equations of straight lines in plane.
4. Circle.
5. Conics.
III. Analytical geometry in three-dimensional euclidean space.
1. Vectorial equations of straight lines and planes in space.
2. Cartesian equations of straight lines.
3. Cartesian equations of planes.
4. Sphere.
5. Cuadrics.
6. Generated surfaces.
References
1. Andrica, D., Varga, Cs., Vacaretu, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997
2. Andrica, D., Varga, Cs., Vacaretu, D., Teme si probleme alese de geometrie, Ed.Plus, Bucuresti,2002
3. Galbura, Gh., Rado, F., Geometrie, Ed. Did. si Ped. Bucuresti, 1979.
4. Miron,R., Geometrie Analitica,Ed.Did. si Ped., Bucuresti, 1976.
5. Murgulescu,E., si col.,Geometrie analitica si diferentiala,Ed.Did.si Ped.,Bucuresti,1971.
6. Pintea, C., Geometrie, Presa Universitara Clujeana,2001.
7. Udriste, C., Tomuleanu, V., Geometrie analitica, Manual pentru clasa a-XI-a, Ed. Did si Ped. Bucuresti
Assessment
Exam.