Biomathematics |
ter |
|||||
Teaching Staff in Charge |
Prof. PRECUP Radu, Ph.D., r.precup@math.ubbcluj.ro |
Aims |
Main models from biology are presented. |
Content |
1. Population dynamics: single species models; Lotka-Volterra type models; equilibrium solutions; stability; hysteresis. 2. Reaction-diffusion systems: conservation equation; reaction-diffusion mechanisms; Turing's theory on diffussion-driven instability; spatial pattern with reaction-diffusion mechanisms; applications in morphogenesis. 3. Mathematical models in epidemiology: SIR models; methods of nonlinear analysis for the treatment of nonlinear equations from biomathematics; geographic spread of epidemics; travelling wave solutions. |
References |
1. J.D. Murray, Mathematical Biology, Springer, Berlin, 1989.
2. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, Berlin, 2001. 3. R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht, 2002. 4. R. Precup, Ecuatii cu derivate partiale, Transilvania Press, Cluj, 1997. |
Assessment |
written examination |