"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Fixed point theory and applications
Code
Semes-
ter
Hours: C+S+L
Credits
Type
Section
ME048
7
2+2+0
6
optional
Matematică
ME048
7
2+2+0
6
optional
Matematică-Informatică
ME048
7
2+2+0
6
compulsory
Matematica Economica
Teaching Staff in Charge
Prof. RUS Ioan, Ph.D., iarus@math.ubbcluj.ro
Aims
To asimilate the basic fixed point principles.
Content
1. Set-theoretical aspects of fixed point theory.
2. Ordered set aspects of fixed point theory.
3. Fioxed point theory in metric spaces.
4. Fixed point theory in banach spaces.
5. Common fixed point therems.
6. Coincidence point theory.
References
1. I.A. Rus, Principii si aplicatii al teoriei punctului fix, Ed. Dacia, Cluj, 1979.
2. D. R. Smart, Fixed point theorems, Cambridge, 1974.
3. J. Dugundiji, A. Granas, Fixed point theory, PWN, 1982.
4. A. Rus, Teoria punctului fix in structuri algebrice, Cluj 1971.
5. I.A. Rus, Teoria punctului fix in analiza functionala, Cluj, 1973.
6. R.P. Agarwal, M. Meehan and D. O'Regan, Fixed point theory and applications, Cambridge Univ. Press, 2001.
7. W.A. Kirk and B. Sims (eds.), Handbook of metric fixed point theory, Kluwer Acad. Publ., 2001.
Assessment
Exam.